Imbalances in cortical dopamine receptor (DR) mediated signaling are believed to underly both the cognitive and psychotic aspects of schizophrenia. Using yeast two-hybrid screens, we identified several DR-interacting proteins (DRIPs) that are prominently involved in intracellular calcium (Ca++) homeostasis (calcyon, NCS-1, TRPC-1, and CAPS). Disease-related increases in calcyon and NCS-1 protein levels were detected in dorsolateral prefrontal cortex (DLPFC) of patients with schizophrenia. We propose to extend our discovery based research on DR signaling complexes (DRSCs) guided by the hypothesis that abnormal dopamine-mediated Ca++ signaling is the basis of prefrontal dysfunction in schizophrenia. The possibility that this approach may also identify potential schizophrenia susceptibility genes (SSGs) is supported by a recent genetic association study which found evidence for an SSG at 10q26, the chromosomal position of the calcyon gene. We will utilize MALDI TOF-TOF mass spectrometry to identify the regional and receptor-specific composition of D1 and D2 DR-containing DRSCs immunoprecipitated from rat and monkey prefrontal cortex and striatum. It is likely that among the DRSC components, some proteins will interact directly with the receptor (DRIPs), while others (DRAPs or DR associated proteins) may interact with peripheral components of the complex. We will confirm interaction of DRSC proteins using a combination of biochemical and immunohistochemical methods. The effects of DRIP and DRAP interactions on DR function will be studied in transfected mammalian cells and native neural systems with a focus on Ca++ signaling and homeostasis. Expression of DRIPs and DRAPs will be analyzed in collections of schizophrenic brains. We will generate transgenic mice overexpressing NCS-1 or calcyon within the prefrontal cortex to learn whether these candidate schizophrenia-associated DRIPs are involved in the etiology of the disease. Transgenic mice will be subjected to a battery of behavioral, anatomical, and Physiological tests relevant to prefrontal deficits manifested in schizophrenia in collaboration withother subprojects. Identifying previously unknown proteins directly or indirectly associated with DRs should provide new insights into mechanisms of dopaminergic signaling in DLPFC, and clues as to the etiology of natomical and physiological defects manifested in schizophrenia.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
5P50MH068789-02
Application #
7062702
Study Section
Special Emphasis Panel (ZMH1)
Project Start
Project End
Budget Start
2004-12-01
Budget End
2005-11-30
Support Year
2
Fiscal Year
2005
Total Cost
$172,155
Indirect Cost
Name
Yale University
Department
Type
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
El-Hassar, Lynda; Simen, Arthur A; Duque, Alvaro et al. (2014) Disrupted in schizophrenia 1 modulates medial prefrontal cortex pyramidal neuron activity through cAMP regulation of transient receptor potential C and small-conductance K+ channels. Biol Psychiatry 76:476-85
Xiao, Jiping; Bergson, Clare (2013) Detection of cell surface dopamine receptors. Methods Mol Biol 964:3-13
Urban, Kimberly R; Gao, Wen-Jun (2013) Methylphenidate and the juvenile brain: enhancement of attention at the expense of cortical plasticity? Med Hypotheses 81:988-94
Wang, H-X; Waterhouse, B D; Gao, W-J (2013) Selective suppression of excitatory synapses on GABAergic interneurons by norepinephrine in juvenile rat prefrontal cortical microcircuitry. Neuroscience 246:312-28
Driesen, N R; McCarthy, G; Bhagwagar, Z et al. (2013) Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans. Mol Psychiatry 18:1199-204
Driesen, Naomi R; McCarthy, Gregory; Bhagwagar, Zubin et al. (2013) The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity. Neuropsychopharmacology 38:2613-22
Muthusamy, Nagendran; Faundez, Victor; Bergson, Clare (2012) Calcyon, a mammalian specific NEEP21 family member, interacts with adaptor protein complex 3 (AP-3) and regulates targeting of AP-3 cargoes. J Neurochem 123:60-72
El-Hassar, Lynda; Hagenston, Anna M; D'Angelo, Lisa Bertetto et al. (2011) Metabotropic glutamate receptors regulate hippocampal CA1 pyramidal neuron excitability via Ca²? wave-dependent activation of SK and TRPC channels. J Physiol 589:3211-29
Arnsten, Amy F T (2011) Catecholamine influences on dorsolateral prefrontal cortical networks. Biol Psychiatry 69:e89-99
Vazdarjanova, A; Bunting, K; Muthusamy, N et al. (2011) Calcyon upregulation in adolescence impairs response inhibition and working memory in adulthood. Mol Psychiatry 16:672-84

Showing the most recent 10 out of 57 publications