Each of the trillion neurons in the human brain can have up to 10,000 synapses. By establishing a dynamic network of synaptic connections, the brain is able to attain the level of functional complexity that underlies human behavior. The efficiency of signal transmission at synapses is constantly being adapted in response to experience as encoded by neural activity. This synaptic plasticity is critical for the fine-tuning of brain development as well as higher brain functions such as learning and memory. The plasticity of synapses is modulated and maintained by processes that are sensitive to neuronal activity and cell-cell contact. Trans-synaptic protein interactions induce differentiation of the synapse and regulate the morphology and function of synapses. Release of neurotransmitter regulates the activity of the neuron and activates a variety of second messenger pathways including calcium-signaling systems, which have a central role in regulating both rapid synaptic plasticity and long-term changes in synaptic connections through the activation of gene transcription. These activity-regulated genes then modulate the function of the neuron and can directly affect synapse function. This Center will investigate the inter- and intracellular signaling pathways to and from the synapse that induce synapse formation and differentiation and regulate synaptic efficacy. These signal transduction pathways are initiated at sites of neuronal cell contact by extracellular signals and are then relayed to the nucleus and finally cycle back to the synapse to regulate synaptic function. Specifically three inter-related questions will be addressed: 1) what are the molecular determinants of synapse formation and differentiation; 2) what are the molecular mechanisms by which synaptic activity induces transcription; and 3) how do activity-induced genes feed back to regulate synaptic function. Many neurological and psychiatric diseases result from defects in synaptic transmission. Thus, understanding the mechanisms regulating the formation and modulation of synaptic transmission in the brain is critical for the development of treatments for these diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
5P50MH068830-02
Application #
6802411
Study Section
Special Emphasis Panel (ZMH1-BRB-S (04))
Program Officer
Nadler, Laurie S
Project Start
2003-09-20
Project End
2008-06-30
Budget Start
2004-07-01
Budget End
2005-06-30
Support Year
2
Fiscal Year
2004
Total Cost
$1,693,571
Indirect Cost
Name
Johns Hopkins University
Department
Neurosciences
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Huang, Guo N (2012) T Cell Calcium Mobilization Study (Flow Cytometry). Bio Protoc 2:
Huang, Guo N (2012) Biotinylation of Cell Surface Proteins. Bio Protoc 2:
Zou, Jia; Zhou, Liang; Du, Xiao-Xia et al. (2011) Rheb1 is required for mTORC1 and myelination in postnatal brain development. Dev Cell 20:97-108
Lee, Kyu Pil; Yuan, Joseph P; Zeng, Weizhong et al. (2009) Molecular determinants of fast Ca2+-dependent inactivation and gating of the Orai channels. Proc Natl Acad Sci U S A 106:14687-92
Yuan, Joseph P; Kim, Min Seuk; Zeng, Weizhong et al. (2009) TRPC channels as STIM1-regulated SOCs. Channels (Austin) 3:221-5
Kim, Min Seuk; Zeng, Weizhong; Yuan, Joseph P et al. (2009) Native Store-operated Ca2+ Influx Requires the Channel Function of Orai1 and TRPC1. J Biol Chem 284:9733-41
Yuan, Joseph P; Zeng, Weizhong; Dorwart, Michael R et al. (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11:337-43
Park, Sungjin; Park, Joo Min; Kim, Sangmok et al. (2008) Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 59:70-83
Zeng, Weizhong; Yuan, Joseph P; Kim, Min Seuk et al. (2008) STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 32:439-48
Shin, Jung Hoon; Kim, Yu Shin; Linden, David J (2008) Dendritic glutamate release produces autocrine activation of mGluR1 in cerebellar Purkinje cells. Proc Natl Acad Sci U S A 105:746-50

Showing the most recent 10 out of 28 publications