This research core provides electronics and machine shop support for the research in the Conte Center for Neuroscience Research (CCNR). The electronics shop component comprises a 300 square foot shop and 50% of the salary on an electronics engineer. The function of the electronics shop is to design and construct specialized equipment that is needed for CCNR research, and to maintain and repair existing equipment. The machine shop component comprises a 600 square foot, fully-equipped machine shop and 50% of the salary of one of the two machinists in the shop. The function of the machine shop is to design and construct equipment such as primate chairs, holders, chambers, and implants for the animals used in the experiments. The machine shop also plays an important role in maintaining and repairing existing implants and equipment.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
5P50MH077970-04
Application #
7942014
Study Section
Special Emphasis Panel (ZMH1)
Project Start
Project End
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
4
Fiscal Year
2009
Total Cost
$120,465
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Chaisanguanthum, Kris S; Shen, Helen H; Sabes, Philip N (2017) Neural Representation and Causal Models in Motor Cortex. J Neurosci 37:3413-3424
Cheung, Steven W; Atencio, Craig A; Levy, Eliott R J et al. (2017) Anisomorphic cortical reorganization in asymmetric sensorineural hearing loss. J Neurophysiol 118:932-948
Yazdan-Shahmorad, Azadeh; Diaz-Botia, Camilo; Hanson, Timothy L et al. (2016) A Large-Scale Interface for Optogenetic Stimulation and Recording in Nonhuman Primates. Neuron 89:927-39
Zhou, Miou; Greenhill, Stuart; Huang, Shan et al. (2016) CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory. Elife 5:
Malone, Brian J; Beitel, Ralph E; Vollmer, Maike et al. (2015) Modulation-frequency-specific adaptation in awake auditory cortex. J Neurosci 35:5904-16
Ravits, John (2014) Focality, stochasticity and neuroanatomic propagation in ALS pathogenesis. Exp Neurol 262 Pt B:121-6
Chaisanguanthum, Kris S; Shen, Helen H; Sabes, Philip N (2014) Motor variability arises from a slow random walk in neural state. J Neurosci 34:12071-80
Atencio, Craig A; Shih, Jonathan Y; Schreiner, Christoph E et al. (2014) Primary auditory cortical responses to electrical stimulation of the thalamus. J Neurophysiol 111:1077-87
Schreiner, Christoph E; Polley, Daniel B (2014) Auditory map plasticity: diversity in causes and consequences. Curr Opin Neurobiol 24:143-56
Malone, Brian J; Beitel, Ralph E; Vollmer, Maike et al. (2013) Spectral context affects temporal processing in awake auditory cortex. J Neurosci 33:9431-50

Showing the most recent 10 out of 58 publications