Hypofunction of cortico-basal ganglia circuits has been hypothesized to underlie some of the debilitating cognitive deficits and negative symptoms that are seen in schizophrenic patients. Antipsychotics are thought to mediate some of their therapeutic effects by normalizing this activity. However, the precise cell populations and the molecular changes involved in this response are still not fully understood. In Project 2 of this Conte center application, we hypothesize that cell-type specific changes in neurons projecting from the frontal cortex to the basal ganglia occur in response to typical and atypical antipsychotic drugs. To test this hypothesis, we will make use of a novel mRNA translational profiling approach.
In Aim 1 of this project, we will perform these studies on two distinct cortico-striatal cell populations we have targeted genetically.
In Aim 2, we will characterize two newly generated mouse lines that may give us translational profiling access to two additional cortico-striatal cell populations. Finally, in Aim 3, in collaboration with the other projects of this center, we will perform a functional analysis of molecules identified in our translational profiling studies of Aims 1 and 2.

Public Health Relevance

to public health: Schizophrenia is a debilitating psychiatric disorder affecting - 1 % of the population. New therapeutic treatments for schizophrenia are needed. Project 2 will contribute to a more complete understanding of the cellular and molecular actions of antipsychotic drugs through biochemical studies of the actions of these drugs in specific populations of nerve cells.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
5P50MH090963-05
Application #
8705021
Study Section
Special Emphasis Panel (ZMH1-ERB-M)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
5
Fiscal Year
2014
Total Cost
$257,400
Indirect Cost
$105,093
Name
Rockefeller University
Department
Type
DUNS #
071037113
City
New York
State
NY
Country
United States
Zip Code
10065
Seo, J-S; Zhong, P; Liu, A et al. (2018) Elevation of p11 in lateral habenula mediates depression-like behavior. Mol Psychiatry 23:1113-1119
Xu, Jian; Kurup, Pradeep; Nairn, Angus C et al. (2018) Synaptic NMDA Receptor Activation Induces Ubiquitination and Degradation of STEP61. Mol Neurobiol 55:3096-3111
Nectow, Alexander R; Moya, Maria V; Ekstrand, Mats I et al. (2017) Rapid Molecular Profiling of Defined Cell Types Using Viral TRAP. Cell Rep 19:655-667
Milosevic, Ana; Liebmann, Thomas; Knudsen, Margarete et al. (2017) Cell- and region-specific expression of depression-related protein p11 (S100a10) in the brain. J Comp Neurol 525:955-975
Sebel, Luke E; Graves, Steven M; Chan, C Savio et al. (2017) Haloperidol Selectively Remodels Striatal Indirect Pathway Circuits. Neuropsychopharmacology 42:963-973
Ceglia, Ilaria; Lee, Ko-Woon; Cahill, Michael E et al. (2017) WAVE1 in neurons expressing the D1 dopamine receptor regulates cellular and behavioral actions of cocaine. Proc Natl Acad Sci U S A 114:1395-1400
Seo, J-S; Wei, J; Qin, L et al. (2017) Cellular and molecular basis for stress-induced depression. Mol Psychiatry 22:1440-1447
Nishi, Akinori; Matamales, Miriam; Musante, Veronica et al. (2017) Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution. J Biol Chem 292:1462-1476
Xu, Jian; Kurup, Pradeep; Azkona, Garikoitz et al. (2016) Down-regulation of BDNF in cell and animal models increases striatal-enriched protein tyrosine phosphatase 61 (STEP61 ) levels. J Neurochem 136:285-94
Rapanelli, Maximiliano; Frick, Luciana R; Horn, Kyla D et al. (2016) The Histamine H3 Receptor Differentially Modulates Mitogen-activated Protein Kinase (MAPK) and Akt Signaling in Striatonigral and Striatopallidal Neurons. J Biol Chem 291:21042-21052

Showing the most recent 10 out of 45 publications