This Project investigates how the brain computes the values that rewards have for other people. While the prior two Projects study social decision-making that is based on the value that stimuli have for the person making the decision, this Project 3 studies decisions about the values rewards have for another person. Examples include altruistic behaviors, such as sacrificing food for a child or giving a donation to charity, but also encompass strategic and manipulative behaviors, such as a car salesman's need to figure out how much a customer might value a used car. These abilities are related to empathy and theory-of-mind, likely rare in other animals, and feature pronounced individual differences that can merge into pathology in mental illnesses such as autism. This Project will use the same computational framework as in Project 1, dissecting the neural signals that correlate with the value of decisions benefiting others at the time of choice, and with the values of the outcomes of those decisions (seeing somebody else get a benefit as a consequence of your decision). Only a handful of studies have addressed this topic, yet like the observational learning topic of Project 2 it is ubiquitous in human behavior. This Project continues our multimodal approach, using both fMRI and electrophysiological recordings, and investigating both humans and monkeys.
Two Specific Aims compare the neural mechanisms behind processing decision values and experienced values for oneself, or for another person.
A third Aim i nvestigates how these mechanisms may be modulated by social context: if the other person is a stranger or familiar, or if they are judged to be deserving or not, and if the subject herself is being watched by others or not. A final fourth Aim leverages the data from Core 3 in an exploratory investigation of individual differences.

Public Health Relevance

Many mental illnesses are associated with the most disabling dysfunction in the social domain. In terms of the processes investigated in this Project 3, these are thought to be abnormal in diseases such as fronto-temporal dementia, autism, and psychopathy. This Project will have relevance for the ultimate diagnosis, management and treatment of such disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
1P50MH094258-01A1
Application #
8483067
Study Section
Special Emphasis Panel (ZMH1-ERB-S (02))
Project Start
Project End
Budget Start
2012-07-26
Budget End
2013-04-30
Support Year
1
Fiscal Year
2012
Total Cost
$334,782
Indirect Cost
$124,714
Name
California Institute of Technology
Department
Type
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Adolphs, Ralph; Gläscher, Jan; Tranel, Daniel (2018) Searching for the neural causes of criminal behavior. Proc Natl Acad Sci U S A 115:451-452
Wang, Oliver; Lee, Sang Wan; O'Doherty, John et al. (2018) Model-based and model-free pain avoidance learning. Brain Neurosci Adv 2:2398212818772964
Charpentier, Caroline J; O'Doherty, John P (2018) The application of computational models to social neuroscience: promises and pitfalls. Soc Neurosci 13:637-647
Tusche, Anita; Hutcherson, Cendri A (2018) Cognitive regulation alters social and dietary choice by changing attribute representations in domain-general and domain-specific brain circuits. Elife 7:
Qi, Song; Footer, Owen; Camerer, Colin F et al. (2018) A Collaborator's Reputation Can Bias Decisions and Anxiety under Uncertainty. J Neurosci 38:2262-2269
Fu, Zhongzheng; Rutishauser, Ueli (2018) Single-Neuron Correlates of Awareness during Attentional Blinks. Trends Cogn Sci 22:5-7
Schmidt, Liane; Tusche, Anita; Manoharan, Nicolas et al. (2018) Neuroanatomy of the vmPFC and dlPFC Predicts Individual Differences in Cognitive Regulation During Dietary Self-Control Across Regulation Strategies. J Neurosci 38:5799-5806
Kamm, Janina; Boles Ponto, Laura L; Manzel, Ken et al. (2018) Temporal lobe asymmetry in FDG-PET uptake predicts neuropsychological and seizure outcomes after temporal lobectomy. Epilepsy Behav 78:62-67
Faraut, Mailys C M; Carlson, April A; Sullivan, Shannon et al. (2018) Dataset of human medial temporal lobe single neuron activity during declarative memory encoding and recognition. Sci Data 5:180010
Dubois, Julien; Galdi, Paola; Paul, Lynn K et al. (2018) A distributed brain network predicts general intelligence from resting-state human neuroimaging data. Philos Trans R Soc Lond B Biol Sci 373:

Showing the most recent 10 out of 158 publications