(Project 3) Recent clinical studies that examine prodromal subjects and recent-onset schizophrenia (SZ) have indicated that stress-associated pathways are activated prior to and at the onset of the disease, in contrast to milder changes of the pathways in the chronic stages. In addition, human postmortem studies have demonstrated changes in dendritic spines of pyramidal neurons and parvalbumin (PV)-positive interneurons. These are key neural substrates for the excitatory-inhibitory (E-I) imbalance in prefrontal cortical (PFC) neuronal networks underlying cognitive deficits in SZ. Our preliminary data show changes in stress-associated molecules and interneurons in adolescence and young adulthood in mouse models that display altered adult behaviors relevant to SZ. These models carry genetic perturbations of microtubule-associated molecules and show mild deficits in early neurodevelopment. Based on this background, we propose the following two Aims:
Aim 1 will determine and characterize the critical periods for changes in stress-associated cascades and E-I imbalance in several genetic mouse models with mild brain deficits in early development elicited by microtubule-associated genes;
and Aim 2 will study the mechanisms of neurocircuitry-based behavioral changes associated with medial PFC (mPFC) and orbitofrontal cortex (OFC), such as working memory deficits and behavioral inflexibility. We will also investigate whether adolescent social isolation exacerbates the pathological signatures. Finally, we will intervene with the stress pathways in a molecule, cell type and brain region-specific manner during adolescence to try to rescue adult phenotypes (physiology, behavior). We believe the proposed study is innovative and will lead to the development of new tools for early diagnosis and intervention in cognitive deficits relevant to SZ and related mental disorders.
Showing the most recent 10 out of 190 publications