This project will focus on two areas of extra-striatal pathology in HD (cortex and amygdala) and their relationship to possible pathogenetic mechanisms and to non-motor clinical features (dementia, depression, apathy and irritability). Our preliminary cell counting data suggests that neuronal loss occurs in layers III and V and especially in layer VI. We propose to quantify neuronal depletion using computer-assisted neuronal cell counting methods. The regional topography of changes in relation to the corticostriatal and striato-pallido-thalamo-cortical connections may allow inferences about the pathogenesis of cortical neuropathology. In addition, we will correlate the extent of pathology in four cortical regions with nonmotor clinical symptoms. We will better define the neurotransmitter specificity of the cortical pathology using in situ hybridization, receptor autoradiography, and immunocytochemistry.
Our second aim i s to investigate pathology in the amygdala and associated nuclei, regions where pathologic changes may result in psychiatric abnormalities. Neurotransmitter-specific studies, including our preliminary data on opiate receptors, have suggested that these regions are affected. We will count neurons, using methods similar to the cortical studies; study the details of neurotransmitter-related lesions using in situ hybridization, immunocytochemistry, and receptor autoradiography; and correlate the results with clinical symptoms. Taken together, these studies should further our knowledge of the pathogenetic mechanisms of HD and the relationship between neuropathology and clinical symptoms.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS016375-15
Application #
3738274
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
15
Fiscal Year
1995
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
045911138
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Wu, Dan; Faria, Andreia V; Younes, Laurent et al. (2017) Mapping the order and pattern of brain structural MRI changes using change-point analysis in premanifest Huntington's disease. Hum Brain Mapp 38:5035-5050
Faria, Andreia V; Ratnanather, J Tilak; Tward, Daniel J et al. (2016) Linking white matter and deep gray matter alterations in premanifest Huntington disease. Neuroimage Clin 11:450-460
Krause, Amanda; Mitchell, Claire; Essop, Fahmida et al. (2015) Junctophilin 3 (JPH3) expansion mutations causing Huntington disease like 2 (HDL2) are common in South African patients with African ancestry and a Huntington disease phenotype. Am J Med Genet B Neuropsychiatr Genet 168:573-85
Younes, Laurent; Ratnanather, J Tilak; Brown, Timothy et al. (2014) Regionally selective atrophy of subcortical structures in prodromal HD as revealed by statistical shape analysis. Hum Brain Mapp 35:792-809
Ross, Christopher A; Pantelyat, Alex; Kogan, Jane et al. (2014) Determinants of functional disability in Huntington's disease: role of cognitive and motor dysfunction. Mov Disord 29:1351-8
Hua, Jun; Unschuld, Paul G; Margolis, Russell L et al. (2014) Elevated arteriolar cerebral blood volume in prodromal Huntington's disease. Mov Disord 29:396-401
Unschuld, Paul G; Liu, Xinyang; Shanahan, Megan et al. (2013) Prefrontal executive function associated coupling relates to Huntington's disease stage. Cortex 49:2661-73
Rosenblatt, Adam; Kumar, Brahma V; Mo, Alisa et al. (2012) Age, CAG repeat length, and clinical progression in Huntington's disease. Mov Disord 27:272-6
Ratovitski, Tamara; Chighladze, Ekaterine; Arbez, Nicolas et al. (2012) Huntingtin protein interactions altered by polyglutamine expansion as determined by quantitative proteomic analysis. Cell Cycle 11:2006-21
Waldron-Roby, Elaine; Ratovitski, Tamara; Wang, XiaoFang et al. (2012) Transgenic mouse model expressing the caspase 6 fragment of mutant huntingtin. J Neurosci 32:183-93

Showing the most recent 10 out of 26 publications