This project is concerned with how neuronal cells manage HSV infection at the intracellular level. The intracellular details of HSV/neuronal cell interactions are difficult to study in vivo. Information regarding the mechanisms and kinetics of HSV genome physical organization following neuronal cell infection in vivo and even in vitro is extremely limited. We have, therefore, developed a tissue culture system of quiescent HSV infection using nerve growth factor (NGF) differentiated cells. This system will be used to determine the impact of HSV upon NGF differentiated cells and to track the fate and structure of viral DNA following infection. Briefly, NGF differentiated PC 12 cells have been shown to support long-term """"""""quiescent"""""""" infections of HSV-1. NGF differentiated PC12 cells are not killed by virus infection and, surprisingly, persist longer than uninfected controls. There is little viral transcription and progeny is not detected in the culture medium, despite the presence of an inducible infectious genome. Strangely, the viral genome in quiescently infected PC12 cells persists as a linear form for several weeks before ultimately assuming an endless, presumably circular, state. These cells will, therefore, be used to study (a) if and how HSV can cause populations of PC12 cells to have a survival advantage over uninfected populations; (b) how linear viral genomes can be maintained intact, for weeks in neuronal like cells; (c) the mechanism(s) involved in their assumption of an endless, possibly modified, quiescent viral genomic state. Observations made in this in vitro system will be related to in vivo mouse models of latency by comparing the physical properties of viral DNA derived from tissue derived from infected mice with that from quiescently infected PC12 cells. This work will thus allow for the testing of hypotheses made about HSV latency seen in the vitro system, in mouse models of latency. Some of the information being uncovered in the in vitro, quiescent infection system has the exciting potential to influence our understanding of how HSV genomes are organized and """"""""silenced"""""""".

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS033768-16
Application #
6651791
Study Section
Project Start
2002-09-01
Project End
2003-08-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
16
Fiscal Year
2002
Total Cost
$200,768
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Sanders, Iryna; Boyer, Mark; Fraser, Nigel W (2015) Early nucleosome deposition on, and replication of, HSV DNA requires cell factor PCNA. J Neurovirol 21:358-69
Oh, Jaewook; Sanders, Iryna F; Chen, Eric Z et al. (2015) Genome wide nucleosome mapping for HSV-1 shows nucleosomes are deposited at preferred positions during lytic infection. PLoS One 10:e0117471
Brinkman, Kerry K; Mishra, Prakhar; Fraser, Nigel W (2013) The half-life of the HSV-1 1.5-kb LAT intron is similar to the half-life of the 2.0-kb LAT intron. J Neurovirol 19:102-8
Volcy, Ketna; Fraser, Nigel W (2013) DNA damage promotes herpes simplex virus-1 protein expression in a neuroblastoma cell line. J Neurovirol 19:57-64
Millhouse, Scott; Wang, Xiaohe; Fraser, Nigel W et al. (2012) Direct evidence that HSV DNA damaged by ultraviolet (UV) irradiation can be repaired in a cell type-dependent manner. J Neurovirol 18:231-43
Oh, Jaewook; Ruskoski, Nicholas; Fraser, Nigel W (2012) Chromatin assembly on herpes simplex virus 1 DNA early during a lytic infection is Asf1a dependent. J Virol 86:12313-21
Jiang, Xianzhi; Chentoufi, Aziz Alami; Hsiang, Chinhui et al. (2011) The herpes simplex virus type 1 latency-associated transcript can protect neuron-derived C1300 and Neuro2A cells from granzyme B-induced apoptosis and CD8 T-cell killing. J Virol 85:2325-32
Millhouse, Scott; Su, Ying-Hsiu; Zhang, Xianchao et al. (2010) Evidence that herpes simplex virus DNA derived from quiescently infected cells in vitro, and latently infected cells in vivo, is physically damaged. J Neurovirol 16:384-98
Smith, Sheryl T; Wickramasinghe, Priyankara; Olson, Andrew et al. (2009) Genome wide ChIP-chip analyses reveal important roles for CTCF in Drosophila genome organization. Dev Biol 328:518-28