Mutations in the parkin gene play a prominent role in Parkinson's disease (PD) as mutations in parkin are the main genetic cause of autosomal recessive PD and mutations in parkin also appear to play a role in familial PD. Parkin plays a pivotal role in the ubiquitin proteasomal pathway (UPP) by functioning as an ubiquitin E3 ligase. Most disease causing mutations of parkin are thought to be loss of function mutations that ultimately lead to the absence of ubiquitination and the subsequent failure of UPP-mediated degradation of parkin substrates. Thus, the abnormal accumulation of parkin substrates could play a role in the demise of substantia nigra dopaminergic neurons in patients with parkin mutations. Moreover, inactivation of parkin through dopaminergic and oxidative and nitrosative stress may play a role in sporadic PD. The stress activated non-receptor tyrosine kinase c-Abl phosphorylates and inactivates parkin and may play a critical role in sporadic PD by inactivating parkin. We propose to characterize the role of c-Abl mediated inactivation of parkin and its relationship to oxidative and nitrosative stress in sporadic PD as well as the role of parkin substrates in the pathogenesis of PD. Understanding the function and role of c-Abl and oxidative/nitrosative stress mediated inactivation of parkin may provide novel therapeutics targets to prevent the toxic effects of parkin deficiency in the degenerative process of PD.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
2P50NS038377-11
Application #
7633721
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Sieber, Beth-Anne
Project Start
1998-09-30
Project End
2014-07-31
Budget Start
2009-09-30
Budget End
2010-07-31
Support Year
11
Fiscal Year
2009
Total Cost
$2,005,748
Indirect Cost
Name
Johns Hopkins University
Department
Neurology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Dawson, Ted M; Golde, Todd E; Lagier-Tourenne, Clotilde (2018) Animal models of neurodegenerative diseases. Nat Neurosci 21:1370-1379
Lee, Saebom; Kim, Sangjune; Park, Yong Joo et al. (2018) The c-Abl inhibitor, Radotinib HCl, is neuroprotective in a preclinical Parkinson's disease mouse model. Hum Mol Genet 27:2344-2356
Xiong, Yulan; Neifert, Stewart; Karuppagounder, Senthilkumar S et al. (2018) Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice. Proc Natl Acad Sci U S A 115:1635-1640
Yun, Seung Pil; Kam, Tae-In; Panicker, Nikhil et al. (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease. Nat Med 24:931-938
Hinkle, Jared Thomas; Perepezko, Kate; Bakker, Catherine C et al. (2018) Onset and Remission of Psychosis in Parkinson's Disease: Pharmacologic and Motoric Markers. Mov Disord Clin Pract 5:31-38
Kam, Tae-In; Mao, Xiaobo; Park, Hyejin et al. (2018) Poly(ADP-ribose) drives pathologic ?-synuclein neurodegeneration in Parkinson's disease. Science 362:
Sathe, Gajanan; Na, Chan Hyun; Renuse, Santosh et al. (2018) Phosphotyrosine profiling of human cerebrospinal fluid. Clin Proteomics 15:29
Guerreiro, Rita; Ross, Owen A; Kun-Rodrigues, Celia et al. (2018) Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurol 17:64-74
Hinkle, Jared T; Perepezko, Kate; Bakker, Catherine C et al. (2018) Domain-specific cognitive impairment in non-demented Parkinson's disease psychosis. Int J Geriatr Psychiatry 33:e131-e139
Hinkle, Jared T; Perepezko, Kate; Mills, Kelly A et al. (2018) Dopamine transporter availability reflects gastrointestinal dysautonomia in early Parkinson disease. Parkinsonism Relat Disord 55:8-14

Showing the most recent 10 out of 250 publications