The Proteomics Core will employ cutting-edge proteomics technologies to help address mechanistic questions proposed by the four JHM Udall Center research projects regarding the pathogenesis of Parkinson's disease (PD). The methodologies available through the Proteomics Core provide efficient and sensitive strategies to identify and quantify PD-associated changes in the samples obtained from both disease models and human patients. Thus, we anticipate that proteomic findings generated by the Proteomics Core will help elucidate specific protein-based cellular mechanisms that correlate with PD pathogenesis, identifying novel pathogenic proteins, signaling nodes and protein PTMs with strong association to PD. To this end, the Proteomics Core will provide innovative and traditional mass spectrometry (MS)-based approaches to facilitate the identification and quantification of proteins and their major post-translational modifications (PTMs) including phosphorylation, ubiquitylation and acetylation in the context of diseases. The Core has a wide breadth of expertise in discovery as well as targeted quantitative proteomics methods and strategies. This includes stable isotope labeling by amino acids in cell culture (SILAC) labeling, stable isotope labeling in mammals (SILAM), tandem mass tags (TMT) labeling, filter-aided sample preparation (FASP) based protein extraction and digestion, peptide fractionation methods such as basic reverse-phase liquid chromatography (bRPLC) and strong cation exchange (SCX), chemical and affinity-based PTM-enrichment methods, high-resolution high- accuracy mass spectrometry analysis for global proteomic profiling, targeted quantitation strategies including Multiple Reaction Monitoring (MRM), and bioinformatics and computational tools for the interpretation of even large-scale datasets. The combination of these high-end technologies offers powerful tools to address the proposed research questions of the JHM Udall Center. The overall goal of the Proteomics Core (Core D) is to use state-of-the-art mass spectrometry-based proteomics to facilitate the discovery and validation of protein molecules implicated in PD pathogenesis, providing support to all proposed basic science projects within this Udall Center and to the broader Morris K. Udall scientific community involved in PD research.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS038377-20
Application #
9551707
Study Section
Special Emphasis Panel (ZNS1)
Project Start
Project End
Budget Start
2018-08-01
Budget End
2019-07-31
Support Year
20
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Berger, Nathan A; Besson, Valerie C; Boulares, A Hamid et al. (2018) Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br J Pharmacol 175:192-222
Wu, Xinyan; Zahari, Muhammad Saddiq; Renuse, Santosh et al. (2018) Quantitative phosphoproteomic analysis reveals reciprocal activation of receptor tyrosine kinases between cancer epithelial cells and stromal fibroblasts. Clin Proteomics 15:21
Blauwendraat, Cornelis; Pletnikova, Olga; Geiger, Joshua T et al. (2018) Genetic analysis of neurodegenerative diseases in a pathology cohort. Neurobiol Aging :
Heo, Seok; Diering, Graham H; Na, Chan Hyun et al. (2018) Identification of long-lived synaptic proteins by proteomic analysis of synaptosome protein turnover. Proc Natl Acad Sci U S A 115:E3827-E3836
Dawson, Ted M; Golde, Todd E; Lagier-Tourenne, Clotilde (2018) Animal models of neurodegenerative diseases. Nat Neurosci 21:1370-1379
Lee, Saebom; Kim, Sangjune; Park, Yong Joo et al. (2018) The c-Abl inhibitor, Radotinib HCl, is neuroprotective in a preclinical Parkinson's disease mouse model. Hum Mol Genet 27:2344-2356
Xiong, Yulan; Neifert, Stewart; Karuppagounder, Senthilkumar S et al. (2018) Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice. Proc Natl Acad Sci U S A 115:1635-1640
Yun, Seung Pil; Kam, Tae-In; Panicker, Nikhil et al. (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease. Nat Med 24:931-938
Hinkle, Jared Thomas; Perepezko, Kate; Bakker, Catherine C et al. (2018) Onset and Remission of Psychosis in Parkinson's Disease: Pharmacologic and Motoric Markers. Mov Disord Clin Pract 5:31-38
Kam, Tae-In; Mao, Xiaobo; Park, Hyejin et al. (2018) Poly(ADP-ribose) drives pathologic ?-synuclein neurodegeneration in Parkinson's disease. Science 362:

Showing the most recent 10 out of 250 publications