This Core will provide support to Projects 1, 2 and 3 by providing molecular tools to manipulate gene expression in the proposed studies, and by providing support for the cell-specific isolation of mRNA from target cell types, and for RT-PCR analysis of that RNA to assess changes in gene expression.
Aim 1 will be to design, develop, and validate recombinant adeno-associated viral expression vectors (rAAVs) for distribution to Projects 1-3. These vectors will be used to express proteins under the control of tissue-specific promoters, either in vivo using stereotaxic injection, or in cultured iPSc-derived dopaminergic neurons.
Aim 2 will be to design, develop and validate rAAVs to be used for delivery of shRNA gene knock down constructs for use in each of the Projects.
Aim 3 will be to provide services involving cell-specific isolation of RNA from targeted cells using RiboTag-based isolation of mRNA, and to identify and quantify genes undergoing changes in expression/translation, by RT-PCR analysis of that mRNA. Core B team members are highly skilled in the development and use of these tools. Finally, this Core will support the Projects by developing novel molecular tools, should the need arise.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
2P50NS047085-16
Application #
9615475
Study Section
Special Emphasis Panel (ZNS1)
Project Start
2003-09-15
Project End
2019-08-31
Budget Start
2018-07-01
Budget End
2019-06-30
Support Year
16
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Northwestern University at Chicago
Department
Type
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Hunt Jr, Albert J; Dasgupta, Rajan; Rajamanickam, Shivakumar et al. (2018) Paraventricular hypothalamic and amygdalar CRF neurons synapse in the external globus pallidus. Brain Struct Funct 223:2685-2698
Guzman, Jaime N; Ilijic, Ema; Yang, Ben et al. (2018) Systemic isradipine treatment diminishes calcium-dependent mitochondrial oxidant stress. J Clin Invest 128:2266-2280
Burbulla, Lena F; Song, Pingping; Mazzulli, Joseph R et al. (2017) Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease. Science 357:1255-1261
Dodla, Ramana; Wilson, Charles J (2017) Effect of Phase Response Curve Shape and Synaptic Driving Force on Synchronization of Coupled Neuronal Oscillators. Neural Comput 29:1769-1814
Abrahao, Karina P; Chancey, Jessica H; Chan, C Savio et al. (2017) Ethanol-Sensitive Pacemaker Neurons in the Mouse External Globus Pallidus. Neuropsychopharmacology 42:1070-1081
Surmeier, D James; Obeso, José A; Halliday, Glenda M (2017) Parkinson's Disease Is Not Simply a Prion Disorder. J Neurosci 37:9799-9807
Higgs, Matthew H; Wilson, Charles J (2017) Measurement of phase resetting curves using optogenetic barrage stimuli. J Neurosci Methods 289:23-30
Surmeier, D James; Obeso, José A; Halliday, Glenda M (2017) Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 18:101-113
Chu, Hong-Yuan; McIver, Eileen L; Kovaleski, Ryan F et al. (2017) Loss of Hyperdirect Pathway Cortico-Subthalamic Inputs Following Degeneration of Midbrain Dopamine Neurons. Neuron 95:1306-1318.e5
Shi, Han; Deng, Han-Xiang; Gius, David et al. (2017) Sirt3 protects dopaminergic neurons from mitochondrial oxidative stress. Hum Mol Genet 26:1915-1926

Showing the most recent 10 out of 119 publications