SARS-CoV-2 continues to spread across the globe at an exponential rate with increasing numbers of patients in the hospital. Due to the rapid spread, much remains to be understood about viral pathogenesis and host immune response to infection. Immunological features of COVID-19 progression include a robust pro- inflammatory response driven by innate and adaptive immune cells. Importantly, very recent studies suggest that deficiency in type-I interferon (IFN) signaling is associated with life-threatening COVID-19 outcomes in previously healthy individuals. Establishment of a non-human primate model of severe SARS-CoV-2 infection could prove essential for understanding SARS-CoV-2 pathogenesis and for preclinical testing of candidate antiviral agents and immune modulators able to reduce the extent of viral replication and the excessive inflammation. Herein, we are proposing extensive and state-of-the-art immunologic analyses in SARS-CoV-2 infected rhesus macaques (RMs) to identify markers of inflammation and disease severity that can be used to develop a standardized and robust RM/NHP model of COVID-19 (Aim #1). Furthermore, we will block, specifically and directly in vivo, type- I IFN responses in SARS-CoV-2-infected RMs (Aim #2) via administration of a type-I IFN antagonist (IFN-I ant). This intervention will elucidate the roles of type-I IFN in protecting the host from severe COVID-19 progression and investigate if a short-term IFN-I ant treatment can establish a severe and reproducible NHP COVID-19 model. Additionally, specimens collected longitudinally and at necropsy will be cryo-banked to be shared and used among the COVTEN consortium for validation of established SOPs as well as for addressing additional questions related to COVID-19 inflammation and pathogenesis. The advantage of tracking pathogenesis, immune responses, and viral replication longitudinally, including very early after infection, and across multiple tissues, including lung, heart, and brain, will allow us to address our critical questions with a depth and rigor that is virtually impossible to achieve in humans. These achievements will provide key insights into the mechanisms of SARS-CoV-2 pathogenesis, and will deliver a robust NHP model for prioritizing and accelerating the development of the most promising candidate therapeutics. This study will cross-validate COVTEN SOPs and establish a robust model to be utilized by the ACTIV consortium.

Public Health Relevance

Given the global impetus to develop therapeutics able to reduce COVID-19 morbidity and mortality, we are proposing a series of rigorous and highly controlled studied in SARS-CoV-2 infected rhesus macaques to (i) identify signatures of inflammation and disease severity; (ii) elucidate the role of type-I IFN in protection from severe COVID-19; and (iii) block type-I IFN responses to establish a severe and reproducible NHP COVID-19 model.

National Institute of Health (NIH)
Office of The Director, National Institutes of Health (OD)
Primate Research Center Grants (P51)
Project #
Application #
Study Section
Program Officer
Hild, Sheri Ann
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
Schools of Medicine
United States
Zip Code
Hernandes, Marina S; Lass├Ęgue, Bernard; Hilenski, Lula L et al. (2018) Polymerase delta-interacting protein 2 deficiency protects against blood-brain barrier permeability in the ischemic brain. J Neuroinflammation 15:45
Diaz, Ariel; Merino, Paola; Manrique, Luis G et al. (2018) Urokinase-type plasminogen activator (uPA) protects the tripartite synapse in the ischemic brain via ezrin-mediated formation of peripheral astrocytic processes. J Cereb Blood Flow Metab :271678X18783653
Ende, Zachary; Deymier, Martin J; Claiborne, Daniel T et al. (2018) HLA Class I Downregulation by HIV-1 Variants from Subtype C Transmission Pairs. J Virol :
Buggert, Marcus; Nguyen, Son; Salgado-Montes de Oca, Gonzalo et al. (2018) Identification and characterization of HIV-specific resident memory CD8+ T cells in human lymphoid tissue. Sci Immunol 3:
Rogers, Christina N; Ross, Amy P; Sahu, Shweta P et al. (2018) Oxytocin- and arginine vasopressin-containing fibers in the cortex of humans, chimpanzees, and rhesus macaques. Am J Primatol 80:e22875
Singh, Arun; Jenkins, Meagan A; Burke Jr, Kenneth J et al. (2018) Glutamatergic Tuning of Hyperactive Striatal Projection Neurons Controls the Motor Response to Dopamine Replacement in Parkinsonian Primates. Cell Rep 22:941-952
Diaz, Ariel; Yepes, Manuel (2018) Urokinase-type plasminogen activator promotes synaptic repair in the ischemic brain. Neural Regen Res 13:232-233
Mitrano, Darlene A; Jackson, Kelsey; Finley, Samantha et al. (2018) ?1b-Adrenergic Receptor Localization and Relationship to the D1-Dopamine Receptor in the Rat Nucleus Accumbens. Neuroscience 371:126-137
Huot, Nicolas; Bosinger, Steven E; Paiardini, Mirko et al. (2018) Lymph Node Cellular and Viral Dynamics in Natural Hosts and Impact for HIV Cure Strategies. Front Immunol 9:780
Li, Chun-Xia; Zhang, Xiaodong (2018) Evaluation of prolonged administration of isoflurane on cerebral blood flow and default mode network in macaque monkeys anesthetized with different maintenance doses. Neurosci Lett 662:402-408

Showing the most recent 10 out of 810 publications