SARS-CoV-2 continues to spread across the globe at an exponential rate with increasing numbers of patients in the hospital. Due to the rapid spread, much remains to be understood about viral pathogenesis and host immune response to infection. Immunological features of COVID-19 progression include a robust pro- inflammatory response driven by innate and adaptive immune cells. Importantly, very recent studies suggest that deficiency in type-I interferon (IFN) signaling is associated with life-threatening COVID-19 outcomes in previously healthy individuals. Establishment of a non-human primate model of severe SARS-CoV-2 infection could prove essential for understanding SARS-CoV-2 pathogenesis and for preclinical testing of candidate antiviral agents and immune modulators able to reduce the extent of viral replication and the excessive inflammation. Herein, we are proposing extensive and state-of-the-art immunologic analyses in SARS-CoV-2 infected rhesus macaques (RMs) to identify markers of inflammation and disease severity that can be used to develop a standardized and robust RM/NHP model of COVID-19 (Aim #1). Furthermore, we will block, specifically and directly in vivo, type- I IFN responses in SARS-CoV-2-infected RMs (Aim #2) via administration of a type-I IFN antagonist (IFN-I ant). This intervention will elucidate the roles of type-I IFN in protecting the host from severe COVID-19 progression and investigate if a short-term IFN-I ant treatment can establish a severe and reproducible NHP COVID-19 model. Additionally, specimens collected longitudinally and at necropsy will be cryo-banked to be shared and used among the COVTEN consortium for validation of established SOPs as well as for addressing additional questions related to COVID-19 inflammation and pathogenesis. The advantage of tracking pathogenesis, immune responses, and viral replication longitudinally, including very early after infection, and across multiple tissues, including lung, heart, and brain, will allow us to address our critical questions with a depth and rigor that is virtually impossible to achieve in humans. These achievements will provide key insights into the mechanisms of SARS-CoV-2 pathogenesis, and will deliver a robust NHP model for prioritizing and accelerating the development of the most promising candidate therapeutics. This study will cross-validate COVTEN SOPs and establish a robust model to be utilized by the ACTIV consortium.

Public Health Relevance

Given the global impetus to develop therapeutics able to reduce COVID-19 morbidity and mortality, we are proposing a series of rigorous and highly controlled studied in SARS-CoV-2 infected rhesus macaques to (i) identify signatures of inflammation and disease severity; (ii) elucidate the role of type-I IFN in protection from severe COVID-19; and (iii) block type-I IFN responses to establish a severe and reproducible NHP COVID-19 model.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
Primate Research Center Grants (P51)
Project #
3P51OD011132-60S4
Application #
10321484
Study Section
Program Officer
Hild, Sheri Ann
Project Start
2020-12-23
Project End
2021-04-30
Budget Start
2021-03-01
Budget End
2021-04-30
Support Year
60
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Emory University
Department
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Mimche, Patrice N; Lee, Choon M; Mimche, Sylvie M et al. (2018) EphB2 receptor tyrosine kinase promotes hepatic fibrogenesis in mice via activation of hepatic stellate cells. Sci Rep 8:2532
Berro, LaĆ­s F; Shields, Hannah; Odabas-Geldiay, Melis et al. (2018) Acute effects of 3,4-methylenedioxymethamphetamine (MDMA) and R(-) MDMA on actigraphy-based daytime activity and sleep parameters in rhesus monkeys. Exp Clin Psychopharmacol 26:410-420
Zimmermann, Kelsey S; Li, Chen-Chen; Rainnie, Donald G et al. (2018) Memory Retention Involves the Ventrolateral Orbitofrontal Cortex: Comparison with the Basolateral Amygdala. Neuropsychopharmacology 43:373-383
Villalba, Rosa M; Smith, Yoland (2018) Loss and remodeling of striatal dendritic spines in Parkinson's disease: from homeostasis to maladaptive plasticity? J Neural Transm (Vienna) 125:431-447
Mavigner, Maud; Raper, Jessica; Kovacs-Balint, Zsofia et al. (2018) Postnatal Zika virus infection is associated with persistent abnormalities in brain structure, function, and behavior in infant macaques. Sci Transl Med 10:
Hoang, Thuy; Date, Abhijit A; Ortiz, Jairo Ortiz et al. (2018) Development of rectal enema as microbicide (DREAM): Preclinical progressive selection of a tenofovir prodrug enema. Eur J Pharm Biopharm :
Walker, Lary C (2018) Prion-like mechanisms in Alzheimer disease. Handb Clin Neurol 153:303-319
Forger, Nancy G; Ruszkowski, Elara; Jacobs, Andrew et al. (2018) Effects of sex and prenatal androgen manipulations on Onuf's nucleus of rhesus macaques. Horm Behav 100:39-46
Hennessey, Thomas; Andari, Elissar; Rainnie, Donald G (2018) RDoC-based categorization of amygdala functions and its implications in autism. Neurosci Biobehav Rev 90:115-129
Oh, Hanseul; Eo, Kyung-Yeon; Gumber, Sanjeev et al. (2018) An outbreak of toxoplasmosis in squirrel monkeys (Saimiri sciureus) in South Korea. J Med Primatol :

Showing the most recent 10 out of 810 publications