This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. It is possible to isolate individual brain microvessels intact from recently sacrificed macaques. Using confocal microscopy, we demonstrate imaging of such vessels with a focus on tight junctions. Using similar techniques, combined with detection of other cell types, cytokines and chemokines, allows us to visualize the effects of virus and viral-infected cells on the tight junctions of the blood-brain barrier (BBB) in real time. Brain microvessels stained with phalloidin-488 (to stain the extensive actin network of endothelial vessels) and zo-1 (a tight junction marker) demonstrate a zipper of tight junction protein extending the length of the vessels. The use of multiple color imaging allows us to colocalize activation markers (such as VCAM-1) or signal transduction markers (activated NFKB) and their relationship with down regulation of tight junction proteins in microvessel derived from encephalitic brains. In vessels derived from macaques with encephalitis, we noticed that the staining of zo-1 was lacking from some areas of vessel and not from others: of the same vessels. These areas are rich in VCAM-1 expression, and are thus ideal for adhesion and emigration of mononuclear cells through the BBB.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000164-45
Application #
7349053
Study Section
Special Emphasis Panel (ZRR1-CM-9 (01))
Project Start
2006-05-01
Project End
2007-04-30
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
45
Fiscal Year
2006
Total Cost
$65,435
Indirect Cost
Name
Tulane University
Department
Pathology
Type
Schools of Medicine
DUNS #
053785812
City
New Orleans
State
LA
Country
United States
Zip Code
70118
Mahalingam, Ravi; Kaufer, Benedikt B; Ouwendijk, Werner J D et al. (2018) Attenuation of Simian Varicella Virus Infection by Enhanced Green Fluorescent Protein in Rhesus Macaques. J Virol 92:
Kumar, Vinay; Mansfield, Joshua; Fan, Rong et al. (2018) miR-130a and miR-212 Disrupt the Intestinal Epithelial Barrier through Modulation of PPAR? and Occludin Expression in Chronic Simian Immunodeficiency Virus-Infected Rhesus Macaques. J Immunol 200:2677-2689
Parthasarathy, Geetha; Philipp, Mario T (2018) Intracellular TLR7 is activated in human oligodendrocytes in response to Borrelia burgdorferi exposure. Neurosci Lett 671:38-42
McNamara, Ryan P; Costantini, Lindsey M; Myers, T Alix et al. (2018) Nef Secretion into Extracellular Vesicles or Exosomes Is Conserved across Human and Simian Immunodeficiency Viruses. MBio 9:
Calenda, Giulia; Villegas, Guillermo; Barnable, Patrick et al. (2017) MZC Gel Inhibits SHIV-RT and HSV-2 in Macaque Vaginal Mucosa and SHIV-RT in Rectal Mucosa. J Acquir Immune Defic Syndr 74:e67-e74
Datta, Dibyadyuti; Bansal, Geetha P; Grasperge, Brooke et al. (2017) Comparative functional potency of DNA vaccines encoding Plasmodium falciparum transmission blocking target antigens Pfs48/45 and Pfs25 administered alone or in combination by in vivo electroporation in rhesus macaques. Vaccine 35:7049-7056
Yi, Fei; Guo, Jia; Dabbagh, Deemah et al. (2017) Discovery of Novel Small-Molecule Inhibitors of LIM Domain Kinase for Inhibiting HIV-1. J Virol 91:
Jorgensen, Matthew J; Lambert, Kelsey R; Breaux, Sarah D et al. (2017) Pair housing of Vervets/African Green Monkeys for biomedical research. Am J Primatol 79:1-10
Ramesh, Geeta; Martinez, Alejandra N; Martin, Dale S et al. (2017) Effects of dexamethasone and meloxicam on Borrelia burgdorferi-induced inflammation in glial and neuronal cells of the central nervous system. J Neuroinflammation 14:28
Parthasarathy, Geetha; Philipp, Mario T (2017) Receptor tyrosine kinases play a significant role in human oligodendrocyte inflammation and cell death associated with the Lyme disease bacterium Borrelia burgdorferi. J Neuroinflammation 14:110

Showing the most recent 10 out of 352 publications