This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is an infectious disease emergency. Each year an estimated 8 million people develop, and ~ 2 million people die of TB. New drugs and vaccines are urgently needed to effectively control TB. This requires a better understanding of how Mtb adapts to a wide-variety of environmental conditions, inevitably faced by it during the various stages of infection. Nonhuman Primates (NHPs), arguably, best model critical aspects of TB. Analysis of the mechanisms employed by Mtb to successfully infect and persist in NHP lungs would therefore be very useful. We studied genes essential for growth/survival of Mtb in the NHP lungs experimentally exposed to high doses of Mtb transposon mutants. In this acute model of TB, 33.13% of all tested mutants were attenuated for in-vivo growth compared to the mouse model where only ~6% of all mutants are attenuated. The Mtb mutants attenuated for in-vivo survival in primates were involved in the transport of lipid virulence factors;biosynthesis of cell-wall arabinan and peptidoglycan, fatty-acids and polyketides;DNA repair;sterol metabolism and mammalian cell-entry (mce). Our study highlights the various virulence-mechanisms employed by Mtb for infection and to overcome the hostile environment encountered during infection of NHP lungs. We would like to leverage our ability to model the various clinical phases of human TB - acute, pulmonary TB, chronic-progressive TB and latent, asymptomatic TB in NHPs - to study the growth/survival phenotype profiles of Mtb mutants. Further, we would like to understand the role of two Mtb pathways crucial for virulence, using the NHP model. These include the mce1/mce4 operons, whose members were among mutants that were attenuated for growth in NHP lungs;and members of the dos regulon, which were surprisingly not attenuated in NHP lungs, in-spite of their well-defined roles in latency, persistence and defense against hypoxia.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000164-50
Application #
8358163
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
50
Fiscal Year
2011
Total Cost
$37,186
Indirect Cost
Name
Tulane University
Department
Obstetrics & Gynecology
Type
Schools of Medicine
DUNS #
053785812
City
New Orleans
State
LA
Country
United States
Zip Code
70118
Mahalingam, Ravi; Kaufer, Benedikt B; Ouwendijk, Werner J D et al. (2018) Attenuation of Simian Varicella Virus Infection by Enhanced Green Fluorescent Protein in Rhesus Macaques. J Virol 92:
Kumar, Vinay; Mansfield, Joshua; Fan, Rong et al. (2018) miR-130a and miR-212 Disrupt the Intestinal Epithelial Barrier through Modulation of PPAR? and Occludin Expression in Chronic Simian Immunodeficiency Virus-Infected Rhesus Macaques. J Immunol 200:2677-2689
Parthasarathy, Geetha; Philipp, Mario T (2018) Intracellular TLR7 is activated in human oligodendrocytes in response to Borrelia burgdorferi exposure. Neurosci Lett 671:38-42
McNamara, Ryan P; Costantini, Lindsey M; Myers, T Alix et al. (2018) Nef Secretion into Extracellular Vesicles or Exosomes Is Conserved across Human and Simian Immunodeficiency Viruses. MBio 9:
Yi, Fei; Guo, Jia; Dabbagh, Deemah et al. (2017) Discovery of Novel Small-Molecule Inhibitors of LIM Domain Kinase for Inhibiting HIV-1. J Virol 91:
Jorgensen, Matthew J; Lambert, Kelsey R; Breaux, Sarah D et al. (2017) Pair housing of Vervets/African Green Monkeys for biomedical research. Am J Primatol 79:1-10
Ramesh, Geeta; Martinez, Alejandra N; Martin, Dale S et al. (2017) Effects of dexamethasone and meloxicam on Borrelia burgdorferi-induced inflammation in glial and neuronal cells of the central nervous system. J Neuroinflammation 14:28
Parthasarathy, Geetha; Philipp, Mario T (2017) Receptor tyrosine kinases play a significant role in human oligodendrocyte inflammation and cell death associated with the Lyme disease bacterium Borrelia burgdorferi. J Neuroinflammation 14:110
Calenda, Giulia; Villegas, Guillermo; Barnable, Patrick et al. (2017) MZC Gel Inhibits SHIV-RT and HSV-2 in Macaque Vaginal Mucosa and SHIV-RT in Rectal Mucosa. J Acquir Immune Defic Syndr 74:e67-e74
Datta, Dibyadyuti; Bansal, Geetha P; Grasperge, Brooke et al. (2017) Comparative functional potency of DNA vaccines encoding Plasmodium falciparum transmission blocking target antigens Pfs48/45 and Pfs25 administered alone or in combination by in vivo electroporation in rhesus macaques. Vaccine 35:7049-7056

Showing the most recent 10 out of 352 publications