Dendritic cells with potent antigen-presenting function can be propagated from peripheral blood using recombinant cytokines, and these cells have potential usefulness as immunotherapeutic agents in the treatment of cancer and other disease states. However, it is not known if these in vitro-differentiated dendritic cells have the capacity to migrate in vivo, especially to T cell areas of lymphoid tissue. We have used a fluorescent marker system to track the migration of dendritic cells, propagated in vitro from chimpanzee peripheral blood, following SC injection. We report that injected dendritic cells migrate spontaneously and rapidly to draining lymph nodes where they remain for at least five days. The injected cells interdigitate with T cells in the parafollicular and paracortical zones and retain high level expression of CD86, CD40 and MHC Class II molecules, reflecting a phenotype of potent APC. We conclude that dendritic cells differentiated in vitro from peripheral blo od and administered subcutaneously behave in a manner very similar to endogenous Langerhans cells. These data provide strong experimental support, in a highly relevant large animal model, for the use of in vitro-differentiated dendritic cells as vehicles for immunotherapy. More importantly, they show that the SC route of injection delivers these antigen-presenting cells to sites of T cell activation, a prerequisite for the generation of an effective immune response.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
3P51RR000165-37S1
Application #
2711897
Study Section
Project Start
Project End
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
37
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Emory University
Department
Type
DUNS #
042250712
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Beck, Goichi; Maehara, Shunsuke; Chang, Phat Ly et al. (2018) A Selective Phosphodiesterase 10A Inhibitor Reduces L-Dopa-Induced Dyskinesias in Parkinsonian Monkeys. Mov Disord 33:805-814
Georgieva, Maria; Sia, Jonathan Kevin; Bizzell, Erica et al. (2018) Mycobacterium tuberculosis GroEL2 Modulates Dendritic Cell Responses. Infect Immun 86:
Tedesco, Dana; Grakoui, Arash (2018) Environmental peer pressure: CD4+ T cell help in tolerance and transplantation. Liver Transpl 24:89-97
Mavigner, Maud; Habib, Jakob; Deleage, Claire et al. (2018) Simian Immunodeficiency Virus Persistence in Cellular and Anatomic Reservoirs in Antiretroviral Therapy-Suppressed Infant Rhesus Macaques. J Virol 92:
Walker, Lary C (2018) Prion-like mechanisms in Alzheimer disease. Handb Clin Neurol 153:303-319
Kamberov, Yana G; Guhan, Samantha M; DeMarchis, Alessandra et al. (2018) Comparative evidence for the independent evolution of hair and sweat gland traits in primates. J Hum Evol 125:99-105
Wakeford, Alison G P; Morin, Elyse L; Bramlett, Sara N et al. (2018) A review of nonhuman primate models of early life stress and adolescent drug abuse. Neurobiol Stress 9:188-198
Singh, Arun; Jenkins, Meagan A; Burke Jr, Kenneth J et al. (2018) Glutamatergic Tuning of Hyperactive Striatal Projection Neurons Controls the Motor Response to Dopamine Replacement in Parkinsonian Primates. Cell Rep 22:941-952
Maddox, S A; Kilaru, V; Shin, J et al. (2018) Estrogen-dependent association of HDAC4 with fear in female mice and women with PTSD. Mol Psychiatry 23:658-665
Li, Chun-Xia; Kempf, Doty J; Tong, Frank C et al. (2018) Longitudinal MRI Evaluation of Ischemic Stroke in the Basal Ganglia of a Rhesus Macaque (Macaca mulatta) with Seizures. Comp Med :

Showing the most recent 10 out of 912 publications