This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. In 2010 we concluded the studies outlined in our original R01 submission (Stress Allostasis: CRF, Serotonin and the BNST) and successfully applied to NIH for continuation R01 (Stress-Induced Gene Regulation: BNST CRF Neurons and the Physiology of Anxiety). We have continued to work with the repeated unpredictable shock stress (USS) protocol to examine its effects on the gene expression of serotonin receptor subtypes as well as ion channel subunit expression in BNST neurons. As a foundation for these studies we have conducted a study designed to look at the cell-specific expression of four key ion channel subunits, namely those of Ih, IT, IA, and IAR. The results of these studies were recently published in Molecular and Cellular Neuroscience (Hazra et al., 2011, In Press). We have also published the results of our studies into the physiological properties of CRF-containing neurons that were made possible through the production of a CRF-GFP transgenic mouse (Martin et al., 2010). Another manuscript is in preparation describing the physiological and genetic properties of CRF-containing neurons in the BNST. We have also used this transgenic mouse to examine the relationship between BNST CRF neurons and oxytocin-containing neurons in the hypothalamus. Our studies have revealed a reciprocal relationship between these two neuropeptide systems, such that CRF neurons innervate the oxytocin neurons, and vice versa. The results of this study were submitted and are current under review in Neuropsychoendocrinology (Dabrowska et al., submitted).

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
2P51RR000165-51
Application #
8357415
Study Section
Special Emphasis Panel (ZRR1-CM-5 (01))
Project Start
2011-08-01
Project End
2012-04-30
Budget Start
2011-08-01
Budget End
2012-04-30
Support Year
51
Fiscal Year
2011
Total Cost
$32,906
Indirect Cost
Name
Emory University
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Tedesco, Dana; Grakoui, Arash (2018) Environmental peer pressure: CD4+ T cell help in tolerance and transplantation. Liver Transpl 24:89-97
Mavigner, Maud; Habib, Jakob; Deleage, Claire et al. (2018) Simian Immunodeficiency Virus Persistence in Cellular and Anatomic Reservoirs in Antiretroviral Therapy-Suppressed Infant Rhesus Macaques. J Virol 92:
Walker, Lary C (2018) Prion-like mechanisms in Alzheimer disease. Handb Clin Neurol 153:303-319
Kamberov, Yana G; Guhan, Samantha M; DeMarchis, Alessandra et al. (2018) Comparative evidence for the independent evolution of hair and sweat gland traits in primates. J Hum Evol 125:99-105
Wakeford, Alison G P; Morin, Elyse L; Bramlett, Sara N et al. (2018) A review of nonhuman primate models of early life stress and adolescent drug abuse. Neurobiol Stress 9:188-198
Singh, Arun; Jenkins, Meagan A; Burke Jr, Kenneth J et al. (2018) Glutamatergic Tuning of Hyperactive Striatal Projection Neurons Controls the Motor Response to Dopamine Replacement in Parkinsonian Primates. Cell Rep 22:941-952
Maddox, S A; Kilaru, V; Shin, J et al. (2018) Estrogen-dependent association of HDAC4 with fear in female mice and women with PTSD. Mol Psychiatry 23:658-665
Li, Chun-Xia; Kempf, Doty J; Tong, Frank C et al. (2018) Longitudinal MRI Evaluation of Ischemic Stroke in the Basal Ganglia of a Rhesus Macaque (Macaca mulatta) with Seizures. Comp Med :
Lacreuse, Agnès; Parr, Lisa; Chennareddi, Lakshmi et al. (2018) Age-related decline in cognitive flexibility in female chimpanzees. Neurobiol Aging 72:83-88
Meng, Yuguang; Hu, Xiaoping; Zhang, Xiaodong et al. (2018) Diffusion tensor imaging reveals microstructural alterations in corpus callosum and associated transcallosal fiber tracts in adult macaques with neonatal hippocampal lesions. Hippocampus 28:838-845

Showing the most recent 10 out of 912 publications