This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Objective: To understand how higher order processes or cognition contribute to the control of voluntary movement. Because the execution of voluntary actions usually involves processes such as target selection, learning, memory, planning and expectation, motor systems are well suited for study of these processes. We investigate neuronal processes leading up to the execution of movements of the eyes, in particular, those eye movements that lead to rapid changes in the line of sight - saccades. We have a multi-technique approach to the study of these processes. First, we record electrical activity of single neurons while the subjects perform eye movement tasks designed to tap into cognitive processes. Second, we activate or inactivate particular regions of the brain to produce behaviors or interfere with ongoing behaviors and neural processing. Finally, because damage to certain brain regions produces profound clinical disorders such as Parkinson's disease and Huntington's disease, we study eye movements of both healthy and diseased human subjects to further our understanding of the role these structures play in both cognition and in producing the debilitating effects of these disorders. This research used WNPRC Animal Services. PUBLICATION: Shires J, Joshi S, Basso MA. Shedding new light on the role of the basal ganglia ? superior colliculus pathway in eye movements. Curr Opin Neurobiol. 2010 Dec;20(6):717-25. PMID: 20829033, PMCID: PMC3008502.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000167-50
Application #
8358208
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
50
Fiscal Year
2011
Total Cost
$267,743
Indirect Cost
Name
University of Wisconsin Madison
Department
Type
Other Domestic Higher Education
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Kang, HyunJun; Mesquitta, Walatta-Tseyon; Jung, Ho Sun et al. (2018) GATA2 Is Dispensable for Specification of Hemogenic Endothelium but Promotes Endothelial-to-Hematopoietic Transition. Stem Cell Reports 11:197-211
Rhoads, Timothy W; Burhans, Maggie S; Chen, Vincent B et al. (2018) Caloric Restriction Engages Hepatic RNA Processing Mechanisms in Rhesus Monkeys. Cell Metab 27:677-688.e5
Ellis-Connell, Amy L; Balgeman, Alexis J; Zarbock, Katie R et al. (2018) ALT-803 Transiently Reduces Simian Immunodeficiency Virus Replication in the Absence of Antiretroviral Treatment. J Virol 92:
Park, Mi Ae; Jung, Ho Sun; Slukvin, Igor (2018) Genetic Engineering of Human Pluripotent Stem Cells Using PiggyBac Transposon System. Curr Protoc Stem Cell Biol 47:e63
Ellis, Amy; Balgeman, Alexis; Rodgers, Mark et al. (2017) Characterization of T Cells Specific for CFP-10 and ESAT-6 in Mycobacterium tuberculosis-Infected Mauritian Cynomolgus Macaques. Infect Immun 85:
Rodrigues, Michelle A (2017) Female Spider Monkeys (Ateles geoffroyi) Cope with Anthropogenic Disturbance Through Fission-Fusion Dynamics. Int J Primatol 38:838-855
Buechler, Connor R; Bailey, Adam L; Lauck, Michael et al. (2017) Genome Sequence of a Novel Kunsagivirus (Picornaviridae: Kunsagivirus) from a Wild Baboon (Papio cynocephalus). Genome Announc 5:
Wu, Hong; Whritenour, Jessica; Sanford, Jonathan C et al. (2017) Identification of MHC Haplotypes Associated with Drug-induced Hypersensitivity Reactions in Cynomolgus Monkeys. Toxicol Pathol 45:127-133
Shackman, A J; Fox, A S; Oler, J A et al. (2017) Heightened extended amygdala metabolism following threat characterizes the early phenotypic risk to develop anxiety-related psychopathology. Mol Psychiatry 22:724-732
Kalin, Ned H (2017) Mechanisms underlying the early risk to develop anxiety and depression: A translational approach. Eur Neuropsychopharmacol 27:543-553

Showing the most recent 10 out of 528 publications