During peak viremia and initial antibody response, rhesus macaques infected with pathogenic and nonpathogenic isolates of SIV show distinct differences in viral load and tissue distribution. Animals infected with pathogenic isolates of SIV invariably have virus in the CSF and brain parenchyma by two weeks postinoculation, whereas animals infected with nonpathogenic isolates do not. Mechanisms underlying neuroinvasion by SIV and HIV are unknown, but recruitment of latently infected mononuclear cells from the peripheral circulation (Trojan horse theory) is frequently proposed. To investigate the role of peripheral monocyte recruitment into the perivascular macrophage/microglial cell pool at the time of viral neuroinvasion, we examined the temporal relationships among perivascular macrophage/microglia density, endothelial adhesion molecule expression, and localization of viral nucleic acid in the CNS of macaques acutely infected with pathogenic and nonpathogenic molecular clones of SIV. The concentration of CSF quinolinic acid, a marker of intrathecal immune and macrophage activation, was examined concurrently. We found that significant increases in the density of perivascular macrophages/microglia coincided with viral neuroinvasion and marked elevations in CSF quinolinic acid. Furthermore, combined in situ hybridization and immunohistochemistry demonstrated that infected perivascular cells were macrophages/microglia. These findings provide evidence suggesting that neuroinvasion occurs through an influx of infected monocytes which take up residence
Showing the most recent 10 out of 365 publications