This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Because most studies of AIDS pathogenesis in nonhuman primates have been performed in Indian-origin rhesus macaques (M. mulatta), little is known about lentiviral pathogenicity and control of virus replication following infection of alternative macaque species. Here, we report the consequences of SHIV-89.6P and SIVmac251 infection in cynomolgus (M. fascicularis) and rhesus macaques of Chinese-origin. Compared to the pathogenicity of the same viruses in Indian rhesus, both cynomolgus and Chinese rhesus showed lower levels of plasma virus. By 9-10 months after infection, both viruses became undetectable in plasma more frequently in cynomolgus than in either Chinese or Indian rhesus. Furthermore, CD4+T cell numbers declined less in cynomolgus and Chinese rhesus than in Indian rhesus after SHIV-89.6P infection. Survival after SHIV-89.6P infection was longer in both cynomolgus and Chinese rhesus cohorts than in Indian rhesus. This attenuated pathogenicity was associated with ELISPOT responses to Gag and Env that were generated earlier and of higher frequency in cynomolgus than in Indian rhesus macaques. Cynomolgus also developed higher titer neutralizing antibodies at 10 and 20 weeks post-inoculation against SHIV-89.6 than Indian rhesus. These studies demonstrate that the pathogenicity of nonhuman primate lentiviruses vary markedly in different macaque species or subspecies and implicate the cellular immune responses in the control of pathogenicity in cynomolgus macaques. While cynomolgus and Chinese rhesus macaques provide alternative animal models of lentiviral infection, the lower levels of viremia in cynomolgus macaques limit the usefulness of infection of this species for vaccine trials that utilize viral load as an experimental endpoint.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000168-45
Application #
7349545
Study Section
Special Emphasis Panel (ZRR1-CM-9 (01))
Project Start
2006-05-01
Project End
2007-04-30
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
45
Fiscal Year
2006
Total Cost
$134,807
Indirect Cost
Name
Harvard University
Department
Veterinary Sciences
Type
Schools of Medicine
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
Shang, L; Smith, A J; Reilly, C S et al. (2018) Vaccine-modified NF-kB and GR signaling in cervicovaginal epithelium correlates with protection. Mucosal Immunol 11:512-522
Sonntag, Kai-Christian; Woo, Tsung-Ung W (2018) Laser microdissection and gene expression profiling in the human postmortem brain. Handb Clin Neurol 150:263-272
Almodovar, Sharilyn; Swanson, Jessica; Giavedoni, Luis D et al. (2018) Lung Vascular Remodeling, Cardiac Hypertrophy, and Inflammatory Cytokines in SHIVnef-Infected Macaques. Viral Immunol 31:206-222
Duke, Angela N; Meng, Zhiqiang; Platt, Donna M et al. (2018) Evidence That Sedative Effects of Benzodiazepines Involve Unexpected GABAA Receptor Subtypes: Quantitative Observation Studies in Rhesus Monkeys. J Pharmacol Exp Ther 366:145-157
Kamberov, Yana G; Guhan, Samantha M; DeMarchis, Alessandra et al. (2018) Comparative evidence for the independent evolution of hair and sweat gland traits in primates. J Hum Evol 125:99-105
Seth, Nitin; Simmons, Heather A; Masood, Farah et al. (2018) Model of Traumatic Spinal Cord Injury for Evaluating Pharmacologic Treatments in Cynomolgus Macaques (Macaca fasicularis). Comp Med 68:63-73
Mauney, Sarah A; Woo, Tsung-Ung W; Sonntag, Kai C (2018) Cell Type-Specific Laser Capture Microdissection for Gene Expression Profiling in the Human Brain. Methods Mol Biol 1723:203-221
Termini, James M; Church, Elizabeth S; Silver, Zachary A et al. (2017) Human Immunodeficiency Virus and Simian Immunodeficiency Virus Maintain High Levels of Infectivity in the Complete Absence of Mucin-Type O-Glycosylation. J Virol 91:
Ma, Qi; Ruan, Hongyu; Peng, Lisheng et al. (2017) Proteasome-independent polyubiquitin linkage regulates synapse scaffolding, efficacy, and plasticity. Proc Natl Acad Sci U S A 114:E8760-E8769
Shang, L; Duan, L; Perkey, K E et al. (2017) Epithelium-innate immune cell axis in mucosal responses to SIV. Mucosal Immunol 10:508-519

Showing the most recent 10 out of 365 publications