This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Lack of information on mechanisms of protection against HIV/SIV infection remains one of the leading obstacles to the development of a safe and effective AIDS vaccine. Vaccination of macaques with attenuated SIV strains has consistently proved to be the most effective means of inducing protection against pathogenic SIV challenge and offers the best available experimental model to define specific mechanisms responsible for protection. Previous studies from our group have provided evidence that SIV-specific CD8-positive T cell and humoral responses both contribute to protective immunity induced by SIVdeltanef but have not been able to assess their relative importance or the potential contributions of novel adaptive or innate immune responses to protection. The goal of this study is to utilize a number of novel techniques to carry out a comprehensive analysis of the role of adaptive and innate immune responses in mediating protection induced by SIV?nef against vaginal challenge, one of the most important modes of HIV transmission. SIV?nef infection resulted in significant increases in natural killer cells, SIV-specific CD8-positive T cell responses and antibody responses in the first 2-5 weeks after infection;these responses were associated with minimal protection against vaginal SIVmac251 challenge at 5 weeks after vaccination. Both humoral and cellular immune responses display progressive evidence of maturation from 5 to 20 weeks after vaccination, associated with substantial, though still incomplete, protection against vaginal SIVmac251 challenge. These studies results are yielding a comprehensive delineation of the signature characteristics of protective immunity against lentiviral infection.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000168-48
Application #
7958387
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2009-05-01
Project End
2010-04-30
Budget Start
2009-05-01
Budget End
2010-04-30
Support Year
48
Fiscal Year
2009
Total Cost
$199,721
Indirect Cost
Name
Harvard University
Department
Veterinary Sciences
Type
Schools of Medicine
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
Shang, L; Smith, A J; Reilly, C S et al. (2018) Vaccine-modified NF-kB and GR signaling in cervicovaginal epithelium correlates with protection. Mucosal Immunol 11:512-522
Sonntag, Kai-Christian; Woo, Tsung-Ung W (2018) Laser microdissection and gene expression profiling in the human postmortem brain. Handb Clin Neurol 150:263-272
Almodovar, Sharilyn; Swanson, Jessica; Giavedoni, Luis D et al. (2018) Lung Vascular Remodeling, Cardiac Hypertrophy, and Inflammatory Cytokines in SHIVnef-Infected Macaques. Viral Immunol 31:206-222
Duke, Angela N; Meng, Zhiqiang; Platt, Donna M et al. (2018) Evidence That Sedative Effects of Benzodiazepines Involve Unexpected GABAA Receptor Subtypes: Quantitative Observation Studies in Rhesus Monkeys. J Pharmacol Exp Ther 366:145-157
Kamberov, Yana G; Guhan, Samantha M; DeMarchis, Alessandra et al. (2018) Comparative evidence for the independent evolution of hair and sweat gland traits in primates. J Hum Evol 125:99-105
Seth, Nitin; Simmons, Heather A; Masood, Farah et al. (2018) Model of Traumatic Spinal Cord Injury for Evaluating Pharmacologic Treatments in Cynomolgus Macaques (Macaca fasicularis). Comp Med 68:63-73
Mauney, Sarah A; Woo, Tsung-Ung W; Sonntag, Kai C (2018) Cell Type-Specific Laser Capture Microdissection for Gene Expression Profiling in the Human Brain. Methods Mol Biol 1723:203-221
Termini, James M; Church, Elizabeth S; Silver, Zachary A et al. (2017) Human Immunodeficiency Virus and Simian Immunodeficiency Virus Maintain High Levels of Infectivity in the Complete Absence of Mucin-Type O-Glycosylation. J Virol 91:
Ma, Qi; Ruan, Hongyu; Peng, Lisheng et al. (2017) Proteasome-independent polyubiquitin linkage regulates synapse scaffolding, efficacy, and plasticity. Proc Natl Acad Sci U S A 114:E8760-E8769
Shang, L; Duan, L; Perkey, K E et al. (2017) Epithelium-innate immune cell axis in mucosal responses to SIV. Mucosal Immunol 10:508-519

Showing the most recent 10 out of 365 publications