This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Objective: The primary goal of this Program Project is to investigate interactions between the aging brain and female reproductive senescence. Animal studies have demonstrated clearly that changes in circulating estrogen levels affect cellular and molecular attributes of certain neural circuits and related cognitive functions. However, the link between such observations and the human data on peri- and post-menopausal memory impairment, beneficial neurobehavioral effects of estrogen replacement therapy (ERT) or combined hormone replacement therapy (HRT) and protection against Alzheimer's disease are far from clear. Recent studies from the Women's Health Initiative on potential negative effects of a commonly used combined hormone replacement (HR) regimen have brought these issues to the forefront, and reinforced the need for additional scientific data on which to base therapies that are more physiological and beneficial to women. The Program Project mechanism is ideally suited for a full spectrum analysis of the key issues; from signaling mechanisms of estrogen in the brain to an in-depth structural and functional assessment of the effects of estrogen on the circuits regulating reproductive function (hypothalamus), to the effects of estrogen and aging on cognition and related cortical circuits. Projects 1, 2, and 3 will converge on the rodent model for detailed mechanistic and ultrastructural analyses of estrogen-induced plasticity, interactions with progesterone, and alterations in estrogen-induced plasticity due to aging. Core A and Projects 2, 3, 4, and 5 will converge on the nonhuman primate model (NHP) to study similar systems in NHPs treated with one of several clinically relevant HR regimens involving different schedules of estrogen and progesterone replacement. The aged NHPs will have extensive neuropsychological assessment aimed at determining age, estrogen, and progesterone effects on medial temporal lobe and prefrontal functions. We will investigate the neurobiological effects of multiple HR regimens in young and aged NHPs to reveal key synaptic and cellular reflections of estrogen-induced plasticity as well as effects on neurogenesis, and potential modifications induced by progesterone. In the aged animals, we will illuminate the underlying neurobiological events responsible for cognitive enhancement.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000169-45
Application #
7349616
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2006-05-01
Project End
2007-04-30
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
45
Fiscal Year
2006
Total Cost
$74,514
Indirect Cost
Name
University of California Davis
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Comrie, Alison E; Gray, Daniel T; Smith, Anne C et al. (2018) Different macaque models of cognitive aging exhibit task-dependent behavioral disparities. Behav Brain Res 344:110-119
Day, George Q; Ng, Jillian; Oldt, Robert F et al. (2018) DNA-based Determination of Ancestry in Cynomolgus Macaques (Macaca fascicularis). J Am Assoc Lab Anim Sci 57:432-442
Carroll, Timothy D; Jegaskanda, Sinthujan; Matzinger, Shannon R et al. (2018) A Lipid/DNA Adjuvant-Inactivated Influenza Virus Vaccine Protects Rhesus Macaques From Uncontrolled Virus Replication After Heterosubtypic Influenza A Virus Challenge. J Infect Dis 218:856-867
Midic, Uros; VandeVoort, Catherine A; Latham, Keith E (2018) Determination of single embryo sex in Macaca mulatta and Mus musculus RNA-Seq transcriptome profiles. Physiol Genomics 50:628-635
Almodovar, Sharilyn; Swanson, Jessica; Giavedoni, Luis D et al. (2018) Lung Vascular Remodeling, Cardiac Hypertrophy, and Inflammatory Cytokines in SHIVnef-Infected Macaques. Viral Immunol 31:206-222
Ciupe, Stanca M; Miller, Christopher J; Forde, Jonathan E (2018) A Bistable Switch in Virus Dynamics Can Explain the Differences in Disease Outcome Following SIV Infections in Rhesus Macaques. Front Microbiol 9:1216
Seil, Shannon K; Hannibal, Darcy L; Beisner, Brianne A et al. (2017) Predictors of insubordinate aggression among captive female rhesus macaques. Am J Phys Anthropol 164:558-573
Zhang, Xinjun; Kanthaswamy, Sree; Trask, Jessica S et al. (2017) Genetic Characterization of a Captive Colony of Pigtailed Macaques (Macaca nemestrina). J Am Assoc Lab Anim Sci 56:390-395
Rose, Destanie R; Careaga, Milo; Van de Water, Judy et al. (2017) Long-term altered immune responses following fetal priming in a non-human primate model of maternal immune activation. Brain Behav Immun 63:60-70
Jensen, Kara; Dela Pena-Ponce, Myra Grace; Piatak Jr, Michael et al. (2017) Balancing Trained Immunity with Persistent Immune Activation and the Risk of Simian Immunodeficiency Virus Infection in Infant Macaques Vaccinated with Attenuated Mycobacterium tuberculosis or Mycobacterium bovis BCG Vaccine. Clin Vaccine Immunol 24:

Showing the most recent 10 out of 408 publications