This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Naphthalene is a volatile hydrocarbon which causes dose, species and cell type dependent cytotoxicity after acute exposure and hyperplasia/neoplasia after lifetime exposures in rodents. Toxicity depends upon metabolic activation, and reactive metabolite protein binding correlates with tissue and site susceptibility. Human exposure to naphthalene is universal and occurs from a variety of combustion-related sources but epidemiologic evidence for health effects of human exposure are lacking. Comparative studies examining processes thought to be essential to the toxicity of naphthalene have been examined in nasal epithelium of rats and Rhesus macaques. The studies currently being conducted are focused on determining the kinetics for the initial step in naphthalene metabolism in microsomes prepared from susceptible (rat and mouse nasal olfactory epithelium, mouse airways) and non target (rat airways) tissues in comparison to non-human primates. The highest rates of substrate turnover were in the rat nasal olfactory epithelium (30 nmoles/mg/min). Rates of metabolism in mouse olfactory microsomes (16.4) were half those in the rat. Microsomes from monkey nasoturbinates were less than 10% those of the mouse. Microsomes from dissected murine airways catalyzed NA metabolism at 10.9 nmole/mg/min whereas metabolism in rat airways occurred at 5% of this rate. The majority of the metabolites were accounted for as GSH conjugates of the 1,2-epoxide. At longer incubation times diGSH conjugates of the diepoxide and GSH adducts of the diol epoxide and 1,4-naphthoquinone were observed in all preparations except rat airway. Under the conditions used, less than 12% of the total metabolites produced were accounted for by 1-naphthol or dihydrodiol. Microsomes from mouse airways, mouse and rat nasal olfactory epithelium showed a high degree of stereoselectivity in NA epoxidation (20:1), rat airways and monkey nasal samples did not. Tissue susceptibility to NA-induced injury correlates with high rates of substrate turnover;metabolism in the nasal epithelium of monkeys is 10-50 fold lower than in rat olfactory epithelium.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000169-50
Application #
8357260
Study Section
Special Emphasis Panel (ZRR1-CM-5 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
50
Fiscal Year
2011
Total Cost
$25,210
Indirect Cost
Name
University of California Davis
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Comrie, Alison E; Gray, Daniel T; Smith, Anne C et al. (2018) Different macaque models of cognitive aging exhibit task-dependent behavioral disparities. Behav Brain Res 344:110-119
Day, George Q; Ng, Jillian; Oldt, Robert F et al. (2018) DNA-based Determination of Ancestry in Cynomolgus Macaques (Macaca fascicularis). J Am Assoc Lab Anim Sci 57:432-442
Carroll, Timothy D; Jegaskanda, Sinthujan; Matzinger, Shannon R et al. (2018) A Lipid/DNA Adjuvant-Inactivated Influenza Virus Vaccine Protects Rhesus Macaques From Uncontrolled Virus Replication After Heterosubtypic Influenza A Virus Challenge. J Infect Dis 218:856-867
Midic, Uros; VandeVoort, Catherine A; Latham, Keith E (2018) Determination of single embryo sex in Macaca mulatta and Mus musculus RNA-Seq transcriptome profiles. Physiol Genomics 50:628-635
Almodovar, Sharilyn; Swanson, Jessica; Giavedoni, Luis D et al. (2018) Lung Vascular Remodeling, Cardiac Hypertrophy, and Inflammatory Cytokines in SHIVnef-Infected Macaques. Viral Immunol 31:206-222
Ciupe, Stanca M; Miller, Christopher J; Forde, Jonathan E (2018) A Bistable Switch in Virus Dynamics Can Explain the Differences in Disease Outcome Following SIV Infections in Rhesus Macaques. Front Microbiol 9:1216
Han, Pengcheng; Nielsen, Megan; Song, Melissa et al. (2017) The Impact of Aging on Brain Pituitary Adenylate Cyclase Activating Polypeptide, Pathology and Cognition in Mice and Rhesus Macaques. Front Aging Neurosci 9:180
Pittet, Florent; Johnson, Crystal; Hinde, Katie (2017) Age at reproductive debut: Developmental predictors and consequences for lactation, infant mass, and subsequent reproduction in rhesus macaques (Macaca mulatta). Am J Phys Anthropol 164:457-476
Kyle, Colin T; Stokes, Jared; Bennett, Jeffrey et al. (2017) Cytoarchitectonically-driven MRI atlas of nonhuman primate hippocampus: Preservation of subfield volumes in aging. Hippocampus :
Moadab, Gilda; Bliss-Moreau, Eliza; Bauman, Melissa D et al. (2017) Early amygdala or hippocampus damage influences adolescent female social behavior during group formation. Behav Neurosci 131:68-82

Showing the most recent 10 out of 408 publications