This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Helicobacter pylori commonly infects the human stomach, where it causes inflammation (gastritis) in all individuals and peptic ulcer disease or gastric cancer in some. Although the infection can be treated with antibiotics, this approach is limited by the requirement for multiple drugs administered over a prolonged period of time, by antimicrobial resistance, and by recurrence of infection after treatment. Numerous H. pylori vaccines have been studied in the mouse model, but sterilizing immunity has typically not been achieved, and the results have rarely been extended to primates. The goal of this proposal is to perform a translational, preclinical study to determine the feasibility of using immunization with the outer membrane proteins, BabA and BabB, together with a novel adjuvant, to prevent and treat experimental H. pylori infection in non-human primates. The project brings together the expertise of the Born lab, which discovered and characterized BabA in a series of elegant studies, and the Solnick lab, which has developed and exploited the specific pathogen free (SPF) rhesus macaque model of H. pylori. Preliminary experiments suggest that immunization with BabA and a novel, non-toxic derivative of cholera toxin (CTA1-DD) is highly effective for prophylactic and therapeutic immunization in mice. Experiment 1 will examine protection from H. pylori challenge in specific pathogen free (SPF) rhesus macaques after immunization with purified BabA and BabB plus CTA1-DD, CTA1-DD alone, or control. Experiment 2 will examine the efficacy of immunization with BabA and BabB plus CTA1-DD for primary therapy of experimental H. pylori infection in macaques, and as an adjunct to antibiotic therapy to prevent reinfection upon secondary challenge. The primary endpoint will be quantitative cultures of gastric biopsies performed two and eight weeks after challenge. We will also examine BabA- and BabB-specific antibodies in serum, gastric juice, and feces, as well as histopathology to evaluate inflammation and the topography of infection. If the encouraging results from mouse studies can be replicated in non-human primates, they would serve as the basis for PhaseI/II clinical trials in humans. Helicobacter pylori is a common infection that causes peptic ulcer disease and gastric cancer. Although infection can be treated with antibiotics, this approach is limited by antibiotic resistance and recurrence of infection after treatment. The goal of this proposal is to determine the effectiveness of an Helicobacter pylori vaccine in non-human primates. These experiments could lead to development of a vaccine to prevent and treat Helicobacter pylori infection, which would likely reduce the frequency of peptic ulcer disease and gastric cancer.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Primate Research Center Grants (P51)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-CM-5 (01))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
Veterinary Sciences
Schools of Veterinary Medicine
United States
Zip Code
Comrie, Alison E; Gray, Daniel T; Smith, Anne C et al. (2018) Different macaque models of cognitive aging exhibit task-dependent behavioral disparities. Behav Brain Res 344:110-119
Day, George Q; Ng, Jillian; Oldt, Robert F et al. (2018) DNA-based Determination of Ancestry in Cynomolgus Macaques (Macaca fascicularis). J Am Assoc Lab Anim Sci 57:432-442
Carroll, Timothy D; Jegaskanda, Sinthujan; Matzinger, Shannon R et al. (2018) A Lipid/DNA Adjuvant-Inactivated Influenza Virus Vaccine Protects Rhesus Macaques From Uncontrolled Virus Replication After Heterosubtypic Influenza A Virus Challenge. J Infect Dis 218:856-867
Midic, Uros; VandeVoort, Catherine A; Latham, Keith E (2018) Determination of single embryo sex in Macaca mulatta and Mus musculus RNA-Seq transcriptome profiles. Physiol Genomics 50:628-635
Almodovar, Sharilyn; Swanson, Jessica; Giavedoni, Luis D et al. (2018) Lung Vascular Remodeling, Cardiac Hypertrophy, and Inflammatory Cytokines in SHIVnef-Infected Macaques. Viral Immunol 31:206-222
Ciupe, Stanca M; Miller, Christopher J; Forde, Jonathan E (2018) A Bistable Switch in Virus Dynamics Can Explain the Differences in Disease Outcome Following SIV Infections in Rhesus Macaques. Front Microbiol 9:1216
Feng, Jun-Feng; Liu, Jing; Zhang, Lei et al. (2017) Electrical Guidance of Human Stem Cells in the Rat Brain. Stem Cell Reports 9:177-189
Han, Pengcheng; Nielsen, Megan; Song, Melissa et al. (2017) The Impact of Aging on Brain Pituitary Adenylate Cyclase Activating Polypeptide, Pathology and Cognition in Mice and Rhesus Macaques. Front Aging Neurosci 9:180
Pittet, Florent; Johnson, Crystal; Hinde, Katie (2017) Age at reproductive debut: Developmental predictors and consequences for lactation, infant mass, and subsequent reproduction in rhesus macaques (Macaca mulatta). Am J Phys Anthropol 164:457-476
Kyle, Colin T; Stokes, Jared; Bennett, Jeffrey et al. (2017) Cytoarchitectonically-driven MRI atlas of nonhuman primate hippocampus: Preservation of subfield volumes in aging. Hippocampus :

Showing the most recent 10 out of 408 publications