This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Replicative cellular senescence is a phenomenon of irreversible growth arrest triggered by the accumulation of a discrete number of cell divisions. The vast majority of normal cell types from all vertebrate species display this response. It is becoming increasingly evident that what has classically been described as cellular senescence is a collection of interrelated states that can be triggered by distinct intrinsic and extrinsic stimuli. We have found that when normal human diploid fibroblasts are subcultured into replicative exhaustion, three essentially independent processes can take place, each of which is sufficient to establish a senescent growth arrest state. The first pathway is initiated by telomere shortening. The second pathway is initiated by an unknown, spontaneous and stochastic process that leads to the upregulation of the cyclin-dependent kinase inhibitor p16 n K4A.The third pathway is initiated by mitochondrial damage leading to the production of sufficient oxidative stress to activate the p53 tumor suppressor protein. We have developed an in vitro cell based model system that allows us to selectively track and study senescent cells in unperturbed cultures, and to prepare homogeneous populations of cells that have activated a single senescence pathway.
Aim 1 will examine the role of p53 and upstream effectors in telomere-initiated senescence. Posttranslational modifications of p53 and the activation status of signaling pathways upstream of p53 will be studied.
Aim 2 will seek to discover what causes the spontaneous, age-dependent upregulation of pl6. Effectors implicated in regulating the p 16 gene will be examined, pharmacological methods will be used to probe cytoplasmic kinase cascades, and the physiological state elicited by the p16 pathway will be explored by microarray expression profiling.
Aim 3 will investigate the causes and consequences of spontaneous upregulation of reactive oxygen species (ROS). The functional relationships between the ROS, p 16 and telomere pathways will be examined, and the effect of the IGF signaling pathway implicated in organismal aging on the pathways of cellular senescence will be studied. In all cases, reverse-genetic interventions utilizing dominant and constitutively active proteins as well as siRNA-mediated ablation will be used to probe the transmission of the senescence signals. Interventions will be sought to elicit senescence responses in naive cells, to prevent a natural senescence response caused by replicative exhaustion, and to reverse an established senescent state. Studies described in this proposal will give us a better understanding of cellular senescence processes, and will begin to shed light on the roles of cellular senescence in organismal aging.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR013986-08
Application #
7349829
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2006-05-01
Project End
2007-04-30
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
8
Fiscal Year
2006
Total Cost
$6,752
Indirect Cost
Name
Texas Biomedical Research Institute
Department
Type
DUNS #
007936834
City
San Antonio
State
TX
Country
United States
Zip Code
78245
Joganic, Jessica L; Willmore, Katherine E; Richtsmeier, Joan T et al. (2018) Additive genetic variation in the craniofacial skeleton of baboons (genus Papio) and its relationship to body and cranial size. Am J Phys Anthropol 165:269-285
Shelton, Elaine L; Waleh, Nahid; Plosa, Erin J et al. (2018) Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data. Pediatr Res 84:458-465
Perminov, Ekaterina; Mangosing, Sara; Confer, Alexandra et al. (2018) A case report of ovotesticular disorder of sex development (OT-DSD) in a baboon (Papio spp.) and a brief review of the non-human primate literature. J Med Primatol 47:192-197
Jensen, Jeffrey T; Hanna, Carol; Mishler, Emily et al. (2018) Effect of menstrual cycle phase and hormonal treatments on evaluation of tubal patency in baboons. J Med Primatol 47:40-45
Confer, Alexandra; Owston, Michael A; Kumar, Shyamesh et al. (2018) Multiple endocrine neoplasia-like syndrome in 24 baboons (Papio spp.). J Med Primatol 47:434-439
Mustonen, Allison; Gonzalez, Olga; Mendoza, Elda et al. (2018) Uremic encephalopathy in a rhesus macaque (Macaca mulatta): A case report and a brief review of the veterinary literature. J Med Primatol :
Koistinen, Keith; Mullaney, Lisa; Bell, Todd et al. (2018) Coccidioidomycosis in Nonhuman Primates: Pathologic and Clinical Findings. Vet Pathol 55:905-915
Mahaney, Michael C; Karere, Genesio M; Rainwater, David L et al. (2018) Diet-induced early-stage atherosclerosis in baboons: Lipoproteins, atherogenesis, and arterial compliance. J Med Primatol 47:3-17
Mangosing, Sara; Perminov, Ekaterina; Gonzalez, Olga et al. (2018) Uterine Tumors Resembling Ovarian Sex Cord Tumors in Four Baboons ( Papio spp.). Vet Pathol 55:753-758
Kumar, Shyamesh; Laurence, Hannah; Owston, Michael A et al. (2017) Natural pathology of the captive chimpanzee (Pan troglodytes): A 35-year review. J Med Primatol 46:271-290

Showing the most recent 10 out of 444 publications