This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The goal is to prepare BAC libraries for many species, of high quality, tailored to the scientific community's interest in comparative genomics and functional applications. The work will be done by two collaborating teams, one lead by Dr. Cheng at the Lawrence Berkeley National Laboratory (LBNL) and the other one at the Children's Hospital Oakland Research Institute, co-directed by Drs. Osoegawa & deJong. The application has four components relevant to preparing Bacterial Artificial Chromosomes (BACs): 1) BAC Library preparation, 2) Clone Arraying & Library Duplication, 3) Library Characterization, and 4) Research & Development to improve the overall process efficiency and the BAC library quality. During the first year, the consortium will generate and characterize twelve animal BAC libraries with ten-fold genome redundancy. Presuming an increasing need for additional GBACs and improved production efficiency, 17 and 22 additional libraries will be prepared and characterized in years 2 and 3 respectively. The libraries, based on current BAC cloning technology, will complement and extend the small repertoire of BAC clone collections now available for comparative genome analysis. The new clone collections will be analyzed by a standardized set of tests, including screening with a set of economic markers, limited BAC-end sequencing, BAC fingerprinting, BAC stability analysis and insert size determination. Of particular importance are quality tests to ensure low BAC stability analysis and insert size determination. Of particular importance are quality tests to ensure low levels of clonal cross contamination. Once the libraries pass the quality controls, the new resources will be made available in a format consistent with major applications. To improve the overall process efficiency, a set of Standard Operating Procedures (SOP's) will be developed to move BAC cloning away from an art form towards a routine high-throughput procedures. It is expected that the new BAC resources will contributed towards a routine-high throughput procedure. It is expected that the new BAC resources will contribute to better understanding of gene function and evolution through comparison of genes in a spectrum of animal species. The BAC clones will also become tools to create animal models for human diseases. Widespread dissemination of the clones is an unfunded but essential component of this proposal. Library information will be disseminated by publication and through our home page (www.chori.org/bacpac).

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR013986-08
Application #
7349831
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2006-05-01
Project End
2007-04-30
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
8
Fiscal Year
2006
Total Cost
$37,233
Indirect Cost
Name
Texas Biomedical Research Institute
Department
Type
DUNS #
007936834
City
San Antonio
State
TX
Country
United States
Zip Code
78245
Shelton, Elaine L; Waleh, Nahid; Plosa, Erin J et al. (2018) Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data. Pediatr Res 84:458-465
Perminov, Ekaterina; Mangosing, Sara; Confer, Alexandra et al. (2018) A case report of ovotesticular disorder of sex development (OT-DSD) in a baboon (Papio spp.) and a brief review of the non-human primate literature. J Med Primatol 47:192-197
Jensen, Jeffrey T; Hanna, Carol; Mishler, Emily et al. (2018) Effect of menstrual cycle phase and hormonal treatments on evaluation of tubal patency in baboons. J Med Primatol 47:40-45
Confer, Alexandra; Owston, Michael A; Kumar, Shyamesh et al. (2018) Multiple endocrine neoplasia-like syndrome in 24 baboons (Papio spp.). J Med Primatol 47:434-439
Mustonen, Allison; Gonzalez, Olga; Mendoza, Elda et al. (2018) Uremic encephalopathy in a rhesus macaque (Macaca mulatta): A case report and a brief review of the veterinary literature. J Med Primatol :
Koistinen, Keith; Mullaney, Lisa; Bell, Todd et al. (2018) Coccidioidomycosis in Nonhuman Primates: Pathologic and Clinical Findings. Vet Pathol 55:905-915
Mahaney, Michael C; Karere, Genesio M; Rainwater, David L et al. (2018) Diet-induced early-stage atherosclerosis in baboons: Lipoproteins, atherogenesis, and arterial compliance. J Med Primatol 47:3-17
Mangosing, Sara; Perminov, Ekaterina; Gonzalez, Olga et al. (2018) Uterine Tumors Resembling Ovarian Sex Cord Tumors in Four Baboons ( Papio spp.). Vet Pathol 55:753-758
Joganic, Jessica L; Willmore, Katherine E; Richtsmeier, Joan T et al. (2018) Additive genetic variation in the craniofacial skeleton of baboons (genus Papio) and its relationship to body and cranial size. Am J Phys Anthropol 165:269-285
Kumar, Shyamesh; Laurence, Hannah; Owston, Michael A et al. (2017) Natural pathology of the captive chimpanzee (Pan troglodytes): A 35-year review. J Med Primatol 46:271-290

Showing the most recent 10 out of 444 publications