The Core Laboratory will serve the Sickle Cell Center projects in several ways. The laboratory will be a centralized resource for the investigators, providing all diagnostic needs for patients who are enrolled in the research projects. The research needs of the investigators will also be strongly supported by the availability of 14 state-of-the art machines dedicated to the synthesis, purification, and analysis of proteins and nucleic acids. These instruments form the basis for the services provided by the Core Laboratory, which include: oligonucleotide synthesis, DNA sequence analysis, nucleic acid purification, analysis of fluorescently-labelled DNA fragments, polymerase chain reaction, database analysis and sequence assembly, peptide synthesis, amino acid analysis, protein sequence analysis, preparative electrophoresis, capillary electrophoresis analysis, HPLC analysis and purification. Access to this technology, which would otherwise be unavailable or prohibitively expensive for individuals to obtain, combined with the technical expertise provided by the Core Laboratory personnel will facilitate the successful completion of specific aims proposed in the projects. In addition, the Core Laboratory will develop and implement new diagnostic procedures which win be based on the technology available in the facility and offer these improved assays to the investigators once the methods have been established. The overall impact of the Core Laboratory on the Sickle Cell Center should be the efficient, cost-effective and rapid production of research and diagnostic data for the projects.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Comprehensive Center (P60)
Project #
2P60HL038632-06
Application #
3780638
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
6
Fiscal Year
1993
Total Cost
Indirect Cost
Name
Children's Hospital of Philadelphia
Department
Type
DUNS #
073757627
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Ballas, Samir K; Connes, Philippe; Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia (2018) Rheological properties of sickle erythrocytes in patients with sickle-cell anemia: The effect of hydroxyurea, fetal hemoglobin, and ?-thalassemia. Eur J Haematol 101:798-803
Kwiatkowski, Janet L; Zimmerman, Robert A; Pollock, Avrum N et al. (2009) Silent infarcts in young children with sickle cell disease. Br J Haematol 146:300-5
Adachi, Kazuhiko; Ding, Min; Asakura, Toshio et al. (2009) Relationship between beta4 hydrogen bond and beta6 hydrophobic interactions during aggregate, fiber or crystal formation in oversaturated solutions of hemoglobin A and S. Arch Biochem Biophys 481:137-44
Kiryu, Shigeru; Sundaram, Tessa; Kubo, Shigeto et al. (2008) MRI assessment of lung parenchymal motion in normal mice and transgenic mice with sickle cell disease. J Magn Reson Imaging 27:49-56
Niebanck, Alison E; Pollock, Avrum N; Smith-Whitley, Kim et al. (2007) Headache in children with sickle cell disease: prevalence and associated factors. J Pediatr 151:67-72, 72.e1
Uematsu, Hidemasa; Takahashi, Masaya; Hatabu, Hiroto et al. (2007) Changes in T1 and T2 observed in brain magnetic resonance imaging with delivery of high concentrations of oxygen. J Comput Assist Tomogr 31:662-5
Obata, Kazuo; Mattiello, Julian; Asakura, Kenji et al. (2006) Exposure of blood from patients with sickle cell disease to air changes the morphological, oxygen-binding, and sickling properties of sickled erythrocytes. Am J Hematol 81:26-35
Akbar, Mohammed G K; Tamura, Yutaka; Ding, Min et al. (2006) Inhibition of hemoglobin S polymerization in vitro by a novel 15-mer EF-helix beta73 histidine-containing peptide. Biochemistry 45:8358-67
Adachi, Kazuhiko; Ding, Min; Surrey, Saul et al. (2006) The Hb A variant (beta73 Asp-->Leu) disrupts Hb S polymerization by a novel mechanism. J Mol Biol 362:528-38
Asakura, Toshio; Asakura, Kenji; Obata, Kazuo et al. (2005) Blood samples collected under venous oxygen pressure from patients with sickle cell disease contain a significant number of a new type of reversibly sickled cells: constancy of the percentage of sickled cells in individual patients during steady state. Am J Hematol 80:249-56

Showing the most recent 10 out of 140 publications