Sickle cell anemia is the prototype of a genetic disease caused by a single base-pair mutation, an A-to-T transversion in the sixth codon of the human globin gene. At low oxygen tensions, the substitution of a single amino acid (GLU>Val) in the beta-globin subunit of hemoglobin results in a polymerization of HB S and leads to irregular shaped erythrocyte cells. The sickled erythrocyte cells become trapped n the microcirculation, causing extreme pain and damage to multiple organs. The investigators propose to test the hypothesis that triplex-forming oligonucleotides linked to mutagenic agents can be used to generate mutations in betaS and gamma-globin genes to inhibit the polymerization of HB S within erythrocyte cells and this may be utilized in gene therapy for sickle cell diseases. SV40-based shuttle vectors carrying the target genes will be constructed; an improved mammalian cell mutation assay system will be developed to facilitate the study of triplex-directed mutagenesis of the genes in vivo; oligonucleotides that bind to target sites will be designed and synthesized; oligonucleotide characteristics (such as nucleotide composition, chemical modifications, and analog substitutions) and targeted mutagenesis will be examined. Finally, experiments will be carried out to direct test the hypothesis that targeted mutagenesis of betaS and gamma-globin genes mediated by triplex-forming oligonucleotides can be achieved in vivo in the chromosomal DNA of mammalian cells in culture. The ultimate goal is the delivery of mutagenic oligonucleotides to bone marrow cells and the introduction of permanent and inheritable mutations into desired sites of the betaS and/or gamma-globin gene so that the polymerization of Hb S within cells will be inhibited. Although it may be some time before this technology is applied clinically, this grant application proposes a body of work to establish the potential for the role of targeted mutagenesis in both clinical and scientific endeavors.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Comprehensive Center (P60)
Project #
5P60HL038639-12
Application #
6109871
Study Section
Project Start
1999-04-01
Project End
2000-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
12
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of South Alabama
Department
Type
DUNS #
City
Mobile
State
AL
Country
United States
Zip Code
36688
Haynes Jr, Johnson; Baliga, B Surendra; Obiako, Boniface et al. (2004) Zileuton induces hemoglobin F synthesis in erythroid progenitors: role of the L-arginine-nitric oxide signaling pathway. Blood 103:3945-50
Pace, B S; Qian, X; Ofori-Acquah, S F (2004) Selective inhibition of beta-globin RNA transcripts by antisense RNA molecules. Cell Mol Biol (Noisy-le-grand) 50:43-51
Haynes Jr, Johnson; Obiako, Boniface (2002) Activated polymorphonuclear cells increase sickle red blood cell retention in lung: role of phospholipids. Am J Physiol Heart Circ Physiol 282:H122-30
Foley, Heather A; Ofori-Acquah, Solomon F; Yoshimura, Akihiko et al. (2002) Stat3 beta inhibits gamma-globin gene expression in erythroid cells. J Biol Chem 277:16211-9
Abraham, Ann; Bencsath, F Aladar; Shartava, Archil et al. (2002) Preparation of irreversibly sickled cell beta-actin from normal red blood cell beta-actin. Biochemistry 41:292-6
Kakhniashvili, D G; Goodman, S R (2001) Isolation of spectrin subunits by reverse-phase high-performance liquid chromatography. Protein Expr Purif 23:249-51
Sangerman, J; Kakhniashvili, D; Brown, A et al. (2001) Spectrin ubiquitination and oxidative stress: potential roles in blood and neurological disorders. Cell Mol Biol Lett 6:607-36
Yang, Y M; Pace, B (2001) Pharmacologic induction of fetal hemoglobin synthesis: cellular and molecular mechanisms. Pediatr Pathol Mol Med 20:87-106
Cepeda, M L; Allen, F H; Cepeda, N J et al. (2000) Physical growth, sexual maturation, body image and sickle cell disease. J Natl Med Assoc 92:4-Oct
Xu, L; Ferry, A E; Monteiro, C et al. (2000) Beta globin gene inhibition by antisense RNA transcripts. Gene Ther 7:438-44

Showing the most recent 10 out of 54 publications