During the current funding cycle, the investigators have demonstrated that a major cause of the slow dissociation of the irreversibly sickled cell (ISC) membrane skeleton, and resultant inability of the ISC to model, is a single post-translational modification in ISC beta-actin. In ISC beta-actin a disulfide bridge is formed between cysteine 284 and cysteine 373 which is not found in reversibly sickled cell (RSC) or control-beta actin. However, spectrin was also demonstrated to contribute to the slow dissociation of the IS core skeleton, although its structural defect remains to be determined. Furthermore, the investigators have demonstrated that the reducing agents dithiothreitol (DTT) and N-acetylcysteine both have the ability to inhibit ISC formation in vitro. In the proposed grant period the investigators will determine any structural and functional modification in the actin binding domain of beta spectrin (Aim 1); utilize a rabbit autoantibody which reacts with control alpha spectrin but not ISC alpha spectrin to define the structural (and functional) modifications that exist in alpha spectrin (Aim 2); and begin human trials to determine whether N- acetylcysteine can reduce the number of dense cells and ISC in patients with sickle cell anemia and whether this reduction will lead to less sickle cell crises per year (Aim 3).

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Comprehensive Center (P60)
Project #
5P60HL038639-13
Application #
6324737
Study Section
Project Start
2000-04-01
Project End
2001-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
13
Fiscal Year
2000
Total Cost
$94,037
Indirect Cost
Name
University of South Alabama
Department
Type
DUNS #
City
Mobile
State
AL
Country
United States
Zip Code
36688
Pace, B S; Qian, X; Ofori-Acquah, S F (2004) Selective inhibition of beta-globin RNA transcripts by antisense RNA molecules. Cell Mol Biol (Noisy-le-grand) 50:43-51
Haynes Jr, Johnson; Baliga, B Surendra; Obiako, Boniface et al. (2004) Zileuton induces hemoglobin F synthesis in erythroid progenitors: role of the L-arginine-nitric oxide signaling pathway. Blood 103:3945-50
Haynes Jr, Johnson; Obiako, Boniface (2002) Activated polymorphonuclear cells increase sickle red blood cell retention in lung: role of phospholipids. Am J Physiol Heart Circ Physiol 282:H122-30
Foley, Heather A; Ofori-Acquah, Solomon F; Yoshimura, Akihiko et al. (2002) Stat3 beta inhibits gamma-globin gene expression in erythroid cells. J Biol Chem 277:16211-9
Abraham, Ann; Bencsath, F Aladar; Shartava, Archil et al. (2002) Preparation of irreversibly sickled cell beta-actin from normal red blood cell beta-actin. Biochemistry 41:292-6
Kakhniashvili, D G; Goodman, S R (2001) Isolation of spectrin subunits by reverse-phase high-performance liquid chromatography. Protein Expr Purif 23:249-51
Sangerman, J; Kakhniashvili, D; Brown, A et al. (2001) Spectrin ubiquitination and oxidative stress: potential roles in blood and neurological disorders. Cell Mol Biol Lett 6:607-36
Yang, Y M; Pace, B (2001) Pharmacologic induction of fetal hemoglobin synthesis: cellular and molecular mechanisms. Pediatr Pathol Mol Med 20:87-106
Cepeda, M L; Allen, F H; Cepeda, N J et al. (2000) Physical growth, sexual maturation, body image and sickle cell disease. J Natl Med Assoc 92:4-Oct
Xu, L; Ferry, A E; Monteiro, C et al. (2000) Beta globin gene inhibition by antisense RNA transcripts. Gene Ther 7:438-44

Showing the most recent 10 out of 54 publications