The objectives of the clinical investigation unit of the Bronx Comprehensive Sickle Cell Center (BCSCC) are to optimize care and to serve as a resource that facilitates careful research into the manifestations and pathophysiology of sickle cell disease. This will be accomplished through a balanced program integrating medical, psychological, social and educational needs and assessments and interventions in model settings for specialized patient care. Medical office visits by appointment with specific physicians rather than the traditional clinic setting, fosters increased compliance, more timely health care maintenance, and greater opportunities for patient education. Areas of investigation include: (1) pain assessment and therapy in sickle cell disease and toward acute and chronic painful events specifically targeting patients with high pain rates and corresponding high utilization of hospital-based facilities; and 92) genetic, molecular, and cellular determinants of clinical symptoms in sickle cell disease. These studies should afford the acquisition of knowledge regarding clinical manifestations which should permit the discovery of better ways of diagnosis and management which can be applicable to patients in other centers. The Day Hospital is a model specialized unit for treatment of acute sickle pain that fosters prompt, consistent, and aggressive therapy to optimize relief of pain while serving as a conduit for education of health care providers and for research.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Comprehensive Center (P60)
Project #
5P60HL038655-09
Application #
5213672
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
1996
Total Cost
Indirect Cost
Olivier, Emmanuel N; Rybicki, Anne C; Bouhassira, Eric E (2006) Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells. Stem Cells 24:1914-22
Srinivasulu, Sonati; Perumalsamy, Krishnaveni; Upadhya, Rajendra et al. (2006) Pair-wise interactions of polymerization inhibitory contact site mutations of hemoglobin-S. Protein J 25:503-16
Oh, Il-Hoan; Fabry, Mary E; Humphries, R Keith et al. (2004) Expression of an anti-sickling beta-globin in human erythroblasts derived from retrovirally transduced primitive normal and sickle cell disease hematopoietic cells. Exp Hematol 32:461-9
Kaul, Dhananjay K; Liu, Xiao-du; Chang, Hee-Yoon et al. (2004) Effect of fetal hemoglobin on microvascular regulation in sickle transgenic-knockout mice. J Clin Invest 114:1136-45
Kaul, Dhananjay K; Fabry, Mary E (2004) In vivo studies of sickle red blood cells. Microcirculation 11:153-65
Romero, Jose R; Suzuka, Sandra M; Nagel, Ronald L et al. (2004) Expression of HbC and HbS, but not HbA, results in activation of K-Cl cotransport activity in transgenic mouse red cells. Blood 103:2384-90
Wang, Jian-Ying; Drlica, Karl (2003) Modeling hybridization kinetics. Math Biosci 183:37-47
Alami, Raouf; Fan, Yuhong; Pack, Stephanie et al. (2003) Mammalian linker-histone subtypes differentially affect gene expression in vivo. Proc Natl Acad Sci U S A 100:5920-5
Dewan, John C; Feeling-Taylor, Angela; Puius, Yoram A et al. (2002) Structure of mutant human carbonmonoxyhemoglobin C (betaE6K) at 2.0 A resolution. Acta Crystallogr D Biol Crystallogr 58:2038-42
Chen, Qiuying; Bonaventura, Celia; Nagel, Ronald L et al. (2002) Distinct domain responses of R-state human hemoglobins A, C, and S to anions. Blood Cells Mol Dis 29:119-32

Showing the most recent 10 out of 143 publications