The pathophysiology of sickle cell vasoocclusion is complex and multifactorial, and HbS polymerization and red cell sickling are essential but not sufficient. The premise is that in sickle cell anemia reversible sickling in vivo results in pleiotropic effects such as red cell heterogeneity, endothelial damage, red cell- endothelial interactions, and altered microvascular responses, contributing to vasoocclusive crisis and multiple organ damage. While considerable data has been obtained by us and others using in vitro approaches and microcirculatory preparations, studies in intact animals have been lacking and are indispensable to assess fully these phenomena. The availability of the sickle transgenic mouse (alphaH BetaS BetaS- Antilles[BetaMDD], MDD=mouse homozygous Beta major deletion) makes it possible to test the central hypothesis that the observed pathological manifestations in this model are the result of reversible in vivo sickling and persistent microvascular flow abnormalities. The investigators have recently established (JCI, 96;2845-2853, 1995), using a cremaser preparation in intact sickle transgenic mice, that adhesion intravascular sickling and vascular dynamic abnormalities do occur in vivo. This proposal builds on these novel findings. In the present proposal the objectives are: 1) to test strategies that help reduce red cell water content and thereby improve cell deformability and microcirculatory flow. In particular, the investigators will evaluate the effect of specific inhibitors of Gardos channel as well as test magnesium therapy; 2) to test the hypothesis that intravascular sickling, endothelial damage and red cell-endothelium interactions in transgenic mice would alter vascular reactivity by affecting the status of nitric oxide (NO) and endothelin. The preliminary observations indicate a blunted arteriolar diameter response to acetylcholine in the transgenic mouse despite an increase NO synthase activity. The investigators will investigate endothelium- dependent vascular responses and their relationship to the pathophysiology in these mice; 3) to test the hypothesis that the observed red cell endothelium interaction in the transgenic mouse is the consequence of increased expression of adhesion molecules expressed by damaged/activated endothelium and/or changes in the membrane surface of red cells undergoing sickle-encycl cycles. The investigators will focus on the role of von Willebrand factor (vWF), cytokines and associated expression of adhesion molecules. The proposed use of transgenic mice is expected to provide not only a greater insight into complex vasoocclusive mechanisms but also an efficient and rapid validation of therapeutic approaches.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Comprehensive Center (P60)
Project #
3P60HL038655-15S1
Application #
6646654
Study Section
Project Start
2002-05-20
Project End
2003-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
15
Fiscal Year
2002
Total Cost
$175,153
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
009095365
City
Bronx
State
NY
Country
United States
Zip Code
10461
Olivier, Emmanuel N; Rybicki, Anne C; Bouhassira, Eric E (2006) Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells. Stem Cells 24:1914-22
Srinivasulu, Sonati; Perumalsamy, Krishnaveni; Upadhya, Rajendra et al. (2006) Pair-wise interactions of polymerization inhibitory contact site mutations of hemoglobin-S. Protein J 25:503-16
Oh, Il-Hoan; Fabry, Mary E; Humphries, R Keith et al. (2004) Expression of an anti-sickling beta-globin in human erythroblasts derived from retrovirally transduced primitive normal and sickle cell disease hematopoietic cells. Exp Hematol 32:461-9
Kaul, Dhananjay K; Liu, Xiao-du; Chang, Hee-Yoon et al. (2004) Effect of fetal hemoglobin on microvascular regulation in sickle transgenic-knockout mice. J Clin Invest 114:1136-45
Kaul, Dhananjay K; Fabry, Mary E (2004) In vivo studies of sickle red blood cells. Microcirculation 11:153-65
Romero, Jose R; Suzuka, Sandra M; Nagel, Ronald L et al. (2004) Expression of HbC and HbS, but not HbA, results in activation of K-Cl cotransport activity in transgenic mouse red cells. Blood 103:2384-90
Wang, Jian-Ying; Drlica, Karl (2003) Modeling hybridization kinetics. Math Biosci 183:37-47
Alami, Raouf; Fan, Yuhong; Pack, Stephanie et al. (2003) Mammalian linker-histone subtypes differentially affect gene expression in vivo. Proc Natl Acad Sci U S A 100:5920-5
Miller, Cindy L; Imren, Suzan; Antonchuk, Jennifer et al. (2002) Feasibility of using autologous transplantation to evaluate hematopoietic stem cell-based gene therapy strategies in transgenic mouse models of human disease. Mol Ther 6:422-8
Lutty, Gerard A; Otsuji, Tsuyoshi; Taomoto, Makoto et al. (2002) Mechanisms for sickle red blood cell retention in choroid. Curr Eye Res 25:163-71

Showing the most recent 10 out of 143 publications