The proposed studies will elucidate fundamental mechanisms underlying regulation of neuron glutathione (GSH) homeostasis in response to ethanol (E) and will enable augmentation of these systems to enhance neuroprotection. A key transcription factor regulating GSH homeostasis is Nrf2 which drives requisite transcriptions via binding to the antioxidant response element (ARE). Hypothesis. The central hypothesis is that components of the 3-glutamyl cycle, including internal cellular GSH homeostasis components in neurons, can be up-regulated to protect neurons from E-related apoptotic death. Experiments will define essential mechanisms of ARE-dependent regulation of these components and extend this to interventions that will mitigate E-mediated apoptotic death of neurons. Methods. In vivo studies will utilize rat and mouse binge models. In vitro models will be primary cultures of fetal cerebral cortical neurons. Approaches will include transfections with WT and dominant negative controls, RNA silencing, RT-PCR, luciferase assays, and gel shifts.
Specific Aim 1 : To address the hypothesis that alleviation of ethanol-related damage to neurons can be achieved by optimizing specific components of neuron GSH homeostasis machinery, at the Nrf2/ARE level. The intent is to utilize the Nrf2/ARE cytoprotective system to prevent E-mediated apoptotic neuron death at two levels;first by increased expression of enzymes controlling GSH synthesis and its reduced state ( 3-glutamyl cysteine ligase, glutathione reductase) and second by enhancing regulation of a GSH scavenging system (;-glutamyl transpeptidase (3GT), and aminopeptidase N. Experiments will define mechanisms of ethanol effects on transcriptional and posttranscriptional events controlling expression of these proteins. They will develop means to mitigate E-induced apoptotic death by manipulating Nrf2/ARE driven transcription at key control points of neuron GSH homeostasis machinery.
Specific Aim 2. To determine mechanisms by which ethanol impacts on Nrf2 expression in the neuron. Preliminary studies show that E elicits the up-regulation of Nrf2 protein in neurons which could occur at transcriptional and/or posttranscriptional levels. However, this is insufficient to optimally protect the cells from ethanol-mediated apoptotic death. Thus, we will elucidate how ethanol impacts on Nrf2 expression, with the intent of ultimately enhancing neuroprotective potential. Regulation of Nrf2 will be addressed first by post-translational modifications, Keap1 dependent redox switching, and ubiquitination, and second by regulation at the promoter level.
Specific Aim 3. To extend these concepts to the live animal using a well-documented rat model and a transgenic mouse model (Nrf2-/-). Experiments will test the hypothesis that Nrf2 activation in the developing brain enhances protection against E-mediated neuron damage. These studies will determine developmental profiles of controlling components of GSH homeostasis, their responses to E, the role of Nrf2 and 3GT in cytoprotection from E, and means to enhance this neuroprotection.

Public Health Relevance

The intent of the proposed studies is to elucidate fundamental mechanisms underlying neuroprotective regulation of glutathione (GSH) homeostasis in response to ethanol and to develop strategies to enhance these systems to protect neurons from ethanol-mediated apoptotic death and oxidative damage. In response to stressors, an extensive array of cytoprotective genes is activated in neurons, including those which regulate neuron GSH homeostasis. The key transcription factor controlling this response is Nrf2 which drives requisite transcriptions via binding to a cis regulatory unit, the antioxidant response element (ARE). We have shown that ethanol-mediated death of neurons can be blocked by a GSH homeostasis system and preliminary data illustrate that this neuroprotection can be provided within the neuron itself. It is mediated by Nrf2/ARE driven gene expressions which can be controlled. Linterventions will utilize augmentation of the """"""""3-glutamyl cycle"""""""" or its components which will be manipulated at the molecular level.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Research Project (R01)
Project #
5R01AA010114-15
Application #
8145657
Study Section
Neurotoxicology and Alcohol Study Section (NAL)
Program Officer
Hereld, Dale
Project Start
1994-08-01
Project End
2015-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
15
Fiscal Year
2011
Total Cost
$321,161
Indirect Cost
Name
Texas Tech University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
609980727
City
Lubbock
State
TX
Country
United States
Zip Code
79430
Patel, Dhyanesh; Rathinam, Marylatha; Jarvis, Courtney et al. (2018) Role for Cystathionine ? Lyase (CSE) in an Ethanol (E)-Induced Lesion in Fetal Brain GSH Homeostasis. Int J Mol Sci 19:
Patel, Dhyanesh; Mahimainathan, Lenin; Narasimhan, Madhusudhanan et al. (2017) Ethanol (E) Impairs Fetal Brain GSH Homeostasis by Inhibiting Excitatory Amino-Acid Carrier 1 (EAAC1)-Mediated Cysteine Transport. Int J Mol Sci 18:
Riar, Amanjot Kaur; Narasimhan, Madhusudhanan; Rathinam, Mary Latha et al. (2016) Ethanol induces cytostasis of cortical basal progenitors. J Biomed Sci 23:6
Riar, Amanjot Kaur; Narasimhan, Madhusudhanan; Rathinam, Mary Latha et al. (2014) Ethanol-induced transcriptional activation of programmed cell death 4 (Pdcd4) is mediated by GSK-3? signaling in rat cortical neuroblasts. PLoS One 9:e98080
Narasimhan, Madhusudhanan; Riar, Amanjot Kaur; Rathinam, Mary Latha et al. (2014) Hydrogen peroxide responsive miR153 targets Nrf2/ARE cytoprotection in paraquat induced dopaminergic neurotoxicity. Toxicol Lett 228:179-91
Narasimhan, Madhusudhanan; Rathinam, Marylatha; Riar, Amanjot et al. (2013) Programmed cell death 4 (PDCD4): a novel player in ethanol-mediated suppression of protein translation in primary cortical neurons and developing cerebral cortex. Alcohol Clin Exp Res 37:96-109
Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G et al. (2012) Alcohol-induced one-carbon metabolism impairment promotes dysfunction of DNA base excision repair in adult brain. J Biol Chem 287:43533-42
Narasimhan, Madhusudhanan; Rathinam, Marylatha; Patel, Dhyanesh et al. (2012) Astrocytes Prevent Ethanol Induced Apoptosis of Nrf2 Depleted Neurons by Maintaining GSH Homeostasis. Open J Apoptosis 1:
Kruman, Inna I; Henderson, George I; Bergeson, Susan E (2012) DNA damage and neurotoxicity of chronic alcohol abuse. Exp Biol Med (Maywood) 237:740-7
Narasimhan, Madhusudhanan; Patel, Dhyanesh; Vedpathak, Dhanashree et al. (2012) Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells. PLoS One 7:e51111

Showing the most recent 10 out of 25 publications