This is the fifth renewal of a longstanding project focused on age-related declines in the ability to remember specific past personal experiences, commonly referred to episodic memory. Episodic memory plays an important role in supporting adaptive cognitive functions that require the ability to retrieve and flexibly recombine episodic information, such as imagining novel future experiences or making inferences that link distinct events. However, cognitive aging research has only recently begun to examine the consequences of episodic memory decline for these adaptive functions. Several studies, for example, have documented that reduced episodic retrieval in healthy older adults and patients with Alzheimer's disease is associated with declines in imagining details about future experiences (episodic simulation). Functional magnetic resonance imaging (fMRI) studies have revealed that episodic simulation is associated with a core brain network that includes medial prefrontal, temporal, and parietal cortices as well as lateral temporal and parietal cortices, but little is known about how age-associated changes in episodic simulation are related to the functions of specific regions within this core network. The main goals of the proposed research are to use both neuroimaging and cognitive/behavioral paradigms to identify the effects of aging on the neural mechanisms and cognitive consequences of episodic processes involved in recombining elements of past experiences to construct novel event representations. The first set of experiments will test hypotheses regarding the effects of aging on the neural mechanisms that support flexible recombination of episodic details when participants imagine novel future experiences by applying new fMRI paradigms and procedures developed in recent research: 1) an episodic specificity induction that increases the generation of episodic details during future imagining in both old and young adults; 2) an analytic procedure that allows the identification of core network regions as a function of the timecourse of their engagement during simulation and the amount of information that is simulated; and 3) a novel repetition suppression procedure that has documented that particular core network regions demonstrate repetition-related reductions in neural activity that are linked with specific components of simulated events. The second set of experiments will examine the effects of aging on cognitive consequences of flexible recombination using a new procedure that provides evidence for a link between flexible recombination processes used to make associative inferences about the relations among distinct events and subsequent memory distortions. Several experiments have shown that young adults commit more source memory errors after successful than unsuccessful associative inferences, but preliminary data indicate that older adults do not show this effect. The proposed experiments will explore the conditions under which this striking age difference occurs and test theoretical accounts of why it occurs. Taken together, the proposed studies should provide important new insights into the nature of constructive memory and future imagining with aging.

Public Health Relevance

Statement Memory is fundamentally important to numerous aspects of our everyday lives, and disorders of memory that impair everyday functions are commonly observed in normal aging and Alzheimer's disease. Imagining or mentally simulating events that might occur in the future is crucial to adaptive function, important to planning for the future, and disrupted in healthy aging and Alzheimer's disease. Our work should yield novel insights that will enhance understanding of both neural and cognitive aspects of age-related changes in constructive memory and future imagining.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG008441-29
Application #
10073460
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Wagster, Molly V
Project Start
1989-08-04
Project End
2022-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
29
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Harvard University
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
082359691
City
Cambridge
State
MA
Country
United States
Zip Code
Madore, Kevin P; Jing, Helen G; Schacter, Daniel L (2018) Selective effects of specificity inductions on episodic details: evidence for an event construction account. Memory :1-11
Schacter, Daniel L (2018) Implicit Memory, Constructive Memory, and Imagining the Future: A Career Perspective. Perspect Psychol Sci :1745691618803640
Carpenter, Alexis C; Schacter, Daniel L (2018) Flexible retrieval mechanisms supporting successful inference produce false memories in younger but not older adults. Psychol Aging 33:134-143
Devitt, Aleea L; Schacter, Daniel L (2018) An Optimistic Outlook Creates a Rosy Past: The Impact of Episodic Simulation on Subsequent Memory. Psychol Sci 29:936-946
Thakral, Preston P; Madore, Kevin P; Schacter, Daniel L (2018) Content-specific phenomenological similarity between episodic memory and simulation. Memory :1-6
De Brigard, Felipe; Hanna, Eleanor; St Jacques, Peggy L et al. (2018) How thinking about what could have been affects how we feel about what was. Cogn Emot :1-14
Seli, Paul; Smilek, Daniel; Ralph, Brandon C W et al. (2018) The awakening of the attention: Evidence for a link between the monitoring of mind wandering and prospective goals. J Exp Psychol Gen 147:431-443
Seli, Paul; Kane, Michael J; Smallwood, Jonathan et al. (2018) Mind-Wandering as a Natural Kind: A Family-Resemblances View. Trends Cogn Sci 22:479-490
Carpenter, Alexis C; Schacter, Daniel L (2018) False memories, false preferences: Flexible retrieval mechanisms supporting successful inference bias novel decisions. J Exp Psychol Gen 147:988-1004
Cao, Xiancai; Madore, Kevin P; Wang, Dahua et al. (2018) Remembering the past and imagining the future: attachment effects on production of episodic details in close relationships. Memory 26:1140-1150

Showing the most recent 10 out of 169 publications