Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
3R01AG008470-05S1
Application #
3120101
Study Section
Molecular and Cellular Biophysics Study Section (BBCA)
Project Start
1989-07-12
Project End
1996-06-30
Budget Start
1993-09-30
Budget End
1994-06-30
Support Year
5
Fiscal Year
1993
Total Cost
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
Schools of Arts and Sciences
DUNS #
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Volles, Michael J; Lansbury Jr, Peter T (2007) Relationships between the sequence of alpha-synuclein and its membrane affinity, fibrillization propensity, and yeast toxicity. J Mol Biol 366:1510-22
Fredenburg, Ross A; Rospigliosi, Carla; Meray, Robin K et al. (2007) The impact of the E46K mutation on the properties of alpha-synuclein in its monomeric and oligomeric states. Biochemistry 46:7107-18
Lashuel, Hilal A; Wall, Joseph S (2005) Molecular electron microscopy approaches to elucidating the mechanisms of protein fibrillogenesis. Methods Mol Biol 299:81-101
Lashuel, Hilal A; Grillo-Bosch, Dolors (2005) In vitro preparation of prefibrillar intermediates of amyloid-beta and alpha-synuclein. Methods Mol Biol 299:19-33
Rochet, Jean-Christophe; Outeiro, Tiago Fleming; Conway, Kelly A et al. (2004) Interactions among alpha-synuclein, dopamine, and biomembranes: some clues for understanding neurodegeneration in Parkinson's disease. J Mol Neurosci 23:23-34
Lashuel, Hilal A; Hartley, Dean M; Petre, Benjamin M et al. (2003) Mixtures of wild-type and a pathogenic (E22G) form of Abeta40 in vitro accumulate protofibrils, including amyloid pores. J Mol Biol 332:795-808
Kheterpal, Indu; Lashuel, Hilal A; Hartley, Dean M et al. (2003) Abeta protofibrils possess a stable core structure resistant to hydrogen exchange. Biochemistry 42:14092-8
Shtilerman, Mark D; Ding, Tomas T; Lansbury Jr, Peter T (2002) Molecular crowding accelerates fibrillization of alpha-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson's disease? Biochemistry 41:3855-60
Anguiano, Magdalena; Nowak, Richard J; Lansbury Jr, Peter T (2002) Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes. Biochemistry 41:11338-43
Volles, M J; Lee, S J; Rochet, J C et al. (2001) Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson's disease. Biochemistry 40:7812-9

Showing the most recent 10 out of 25 publications