Age-related decreases in skeletal muscle mass, strength and quality (contractile properties, fiber type composition, etc.), are termed sarcopenia and may contribute to physical disability and loss of independence. The long term goal of this study is to elucidate molecular and cellular mechanism(s) underlying sarcopenia. Despite the importance of muscle mass and strength in preventing disability, the biological mechanisms responsible for these phenomena are poorly understood. Although a large volume of literature demonstrates that muscle strength declines with aging, a central issue remains unresolved. Does muscle atrophy alone account for the decreased contractile force with age?. We have proposed that alterations in intracellular calcium activation are an important component of the differences in muscle strength between adult and aged muscles. Currently, there is only limited information available on the regulation of intracellular calcium levels in skeletal muscle of aged animals. The purpose of this proposal is to determine mechanisms responsible for the decline in skeletal muscle contractility with aging. The molecule that transduces sarcolemma voltage into changes in myoplasmic calcium concentrations is the dihydropyridine receptor (DHPR). As a result of mechanical coupling of dihydropyridine receptors to calcium release channels (ryanodine receptors, RYRs), intracellular calcium levels increase stimulating muscle contraction. The working hypothesis of this proposal is that an increase in DHPR- unlinked RYR1 accounts for a fraction of the decline in skeletal muscle force with aging. DHPR-RYR1 uncoupling at the T tubule-sarcoplasmic reticulum triadic junction results in an absolute reduction in sarcoplasmic reticulum calcium release in response to sarcolemmal depolarization and consequently in a reduced contraction strength in aged skeletal muscle.
The specific aims are: 1) To determine whether the decline in single skeletal muscle contractility is associated with alterations in sarcoplasmic reticulum calcium release in single fast- twitch extensor digitorum longus (EDL) muscle fibers from young (8 months), middle age (18), and old (28) Fisher 344 Brown Norway F1 Hybrid rats (F344BNF1/Nia). 2) To assess whether reductions in the sarcoplasmic reticulum calcium release with age result from an increased number of DHPR-unlinked RYR1. 3) To determine the number of DHPR and RYR1 expression in EDL T-tubule and sarcoplasmic reticulum membranes and the receptors affinity constants for high-affinity ligands in the three age groups. 4) To define whether changes in DHPR and/or RYR1 expression results from DNA transcription/translation alterations.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG013934-05
Application #
6372075
Study Section
Special Emphasis Panel (ZRG4-GRM (01))
Program Officer
Carrington, Jill L
Project Start
1997-04-01
Project End
2002-03-31
Budget Start
2001-04-01
Budget End
2002-03-31
Support Year
5
Fiscal Year
2001
Total Cost
$108,344
Indirect Cost
Name
Wake Forest University Health Sciences
Department
Physiology
Type
Schools of Medicine
DUNS #
937727907
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157
Prazeres, Pedro H D M; Turquetti, Anaelise O M; Azevedo, Patrick O et al. (2018) Perivascular cell ?v integrins as a target to treat skeletal muscle fibrosis. Int J Biochem Cell Biol 99:109-113
Birbrair, Alexander; Borges, Isabella da Terra; Gilson Sena, Isadora Fernandes et al. (2017) How Plastic Are Pericytes? Stem Cells Dev 26:1013-1019
Dias Moura Prazeres, Pedro Henrique; Sena, Isadora Fernandes Gilson; Borges, Isabella da Terra et al. (2017) Pericytes are heterogeneous in their origin within the same tissue. Dev Biol 427:6-11
Xu, Zherong; Feng, Xin; Dong, Juan et al. (2017) Cardiac troponin T and fast skeletal muscle denervation in ageing. J Cachexia Sarcopenia Muscle 8:808-823
Pereyra, Andrea Soledad; Mykhaylyk, Olga; Lockhart, Eugenia Falomir et al. (2016) Magnetofection Enhances Adenoviral Vector-based Gene Delivery in Skeletal Muscle Cells. J Nanomed Nanotechnol 7:
Choi, Seung J; Files, D Clark; Zhang, Tan et al. (2016) Intramyocellular Lipid and Impaired Myofiber Contraction in Normal Weight and Obese Older Adults. J Gerontol A Biol Sci Med Sci 71:557-64
Messi, MarĂ­a Laura; Li, Tao; Wang, Zhong-Min et al. (2016) Resistance Training Enhances Skeletal Muscle Innervation Without Modifying the Number of Satellite Cells or their Myofiber Association in Obese Older Adults. J Gerontol A Biol Sci Med Sci 71:1273-80
Zhang, Tan; Birbrair, Alexander; Wang, Zhong-Min et al. (2015) Improved knee extensor strength with resistance training associates with muscle specific miRNAs in older adults. Exp Gerontol 62:7-13
Zhang, Tan; Taylor, Jackson; Jiang, Yang et al. (2015) Troponin T3 regulates nuclear localization of the calcium channel Cav?1a subunit in skeletal muscle. Exp Cell Res 336:276-86
Nicklas, Barbara J; Chmelo, Elizabeth; Delbono, Osvaldo et al. (2015) Effects of resistance training with and without caloric restriction on physical function and mobility in overweight and obese older adults: a randomized controlled trial. Am J Clin Nutr 101:991-9

Showing the most recent 10 out of 39 publications