The broad goal of this translational research project is to improve predictions of older driver safety through comprehensive measurements of naturalistic driving over extended time frames in the real world. To date this research project and team have developed extensive tools, including neuropsychological tests, driving simulation, and instrumented vehicles, with distinct advantages for predictions of driver safety. However drivers may behave differently in controlled tests than they do over extended time frames amid the contingencies and risks of the real world. Drivers who are aware of their functional impairments may strategically reduce their exposure to driving risk, while those who lack awareness will not. A greater understanding of real-world driver exposure and awareness is indispensible to predictions of driver safety and development of evidence-based criteria to improve driver awareness, safety, mobility, and quality of life. To tackle these linchpin issues, a multidisciplinary team of experts (in neurology, cognitive science, driver assessment, human factors, measurement, biostatistics, and public policy) will apply advances in sensor and cellular communications technology to meet 4 Specific Aims: (1) Quantify real-world driving behavior through comprehensive naturalistic driving assessments over extended time frames in 120 older drivers who are at increased risk for driving safety errors because of a range of functional impairment associated with aging;(2) Quantify exposure to real-world driving risks;(3) Quantify self-awareness of impairment;and (4) Develop models that incorporate functional and naturalistic driving data to predict subsequent crashes and traffic citations. Real-life driving wil be studied longitudinally using modern instrumentation and telemetry packages providing direct, detailed information on behavior from each driver's own vehicle over two 3-month periods starting one year apart. The grand total of 60 years of real-life driving data provides comprehensive observations of driver strategy, tactics and exposure to road risks not available from any other source. Safety-critical behaviors and errors will be identified through analyses of electronic sensor and video data from each driver's vehicle. The approach, methodologies, and instrumentation are novel to the field of older driver research and in a broad sense. By tackling cognitive and behavioral research in real-world settings, this study will provide unique data on driver exposure and safety errors and advance the NIH priority of performing translational research in neuroscience. Innovative tools and techniques used in this study cycle will provide critical information needed to identify individuals who are at greater risk for impaired driving du to functional impairments, lack of awareness, and lack of compensatory behaviors associated with aging. The information could be used to develop strategies for advising patients and families on fitness to drive, and extend safe mobility through individualized interventions (including situation awareness and hazard avoidance training), in line with the promise of personalized medicine.

Public Health Relevance

Laboratory based testing often leads to attenuated predictions of human behavior in real-world settings, including in models that seek to explain factors that affect older driver safety on the road. Building on extensive findings in the previous cycle, and upon technological advances in sensor development, we are now able to observe and quantify the safety of older drivers in real- world, as they drive their own vehicles over extended time frames. The findings from the next research cycle will inform development of future tools for screening, identifying, educating, and intervening in vulnerable individuals with functional impairments due to aging in line with meeting the NIH priority of performing translational research.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Project (R01)
Project #
Application #
Study Section
Cognition and Perception Study Section (CP)
Program Officer
King, Jonathan W
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Iowa
Schools of Medicine
Iowa City
United States
Zip Code
McLaurin, Elease J; Lee, John D; McDonald, Anthony D et al. (2018) Using Topic Modeling to Develop Multi-level Descriptions of Naturalistic Driving Data from Drivers with and without Sleep Apnea. Transp Res Part F Traffic Psychol Behav 58:25-38
Dawson, Jeffrey D; Bair, Elizabeth; Askan, Nazan et al. (2017) CONTEXTUALIZING NATURALISTIC DRIVING DATA IN A RURAL STATE AMONG DRIVERS WITH AND WITHOUT OBSTRUCTIVE SLEEP APNEA. Proc Int Driv Symp Hum Factors Driv Assess Train Veh Des 2017:23-29
Aksan, Nazan; Marini, Robert; Tippin, Jon et al. (2017) Effects of Actigraphically Acquired Sleep Quality onDriving Outcomes in Obstructive Sleep Apnea Patientsand Control drivers: A Naturalistic Study. Proc Int Driv Symp Hum Factors Driv Assess Train Veh Des 2017:242-250
Aksan, Nazan; Sager, Lauren; Hacker, Sarah et al. (2017) Individual differences in cognitive functioning predict effectiveness of a heads-up lane departure warning for younger and older drivers. Accid Anal Prev 99:171-183
Aksan, Nazan; Hacker, Sarah D; Sager, Lauren et al. (2016) Correspondence between Simulator and On-Road Drive Performance: Implications for Assessment of Driving Safety. Geriatrics (Basel) 1:
Tippin, Jon; Aksan, Nazan; Dawson, Jeffrey et al. (2016) Sleep remains disturbed in patients with obstructive sleep apnea treated with positive airway pressure: a three-month cohort study using continuous actigraphy. Sleep Med 24:24-31
Aksan, Nazan; Sager, Lauren; Hacker, Sarah et al. (2016) Forward Collision Warning: Clues to Optimal Timing of Advisory Warnings. SAE Int J Transp Saf 4:107-112
Rusch, Michelle L; Schall Jr, Mark C; Lee, John D et al. (2016) Time-to-contact estimation errors among older drivers with useful field of view impairments. Accid Anal Prev 95:284-91
Muir, Carlyn; Charlton, Judith L; Odell, Morris et al. (2016) Medical review licensing outcomes in drivers with visual field loss in Victoria, Australia. Clin Exp Optom 99:462-8
Lester, Benjamin D; Sager, Lauren N; Dawson, Jeffrey et al. (2015) PILOT RESULTS ON FORWARD COLLISION WARNING SYSTEM EFFECTIVENESS IN OLDER DRIVERS. Proc Int Driv Symp Hum Factors Driv Assess Train Veh Des 2015:345-351

Showing the most recent 10 out of 55 publications