Our main hypothesis is that a therapeutic agent blocking the interaction between apolipoprotein E and ?-amyloid will be effective in reducing and preventing 6-amyloid (A?) related pathology of Alzheimer's disease (AD).The ?-amyloid (A?) cascade hypothesis maintains that accumulation of the A??peptide constitutes a critical event in the early pathogenesis of AD. An excess of A? assembles into toxic oligomers and subsequently into deposits in the brain's parenchyma and in walls of vessels producing cerebral amyloid angiopathy (CAA).The direct binding between A? and apolipoprotein E (apoE) has been identified as an important factor promoting the deposition of A? in the CMS and regulating its clearance across the blood-brain-barrier (BBB).The magnitude of apoE/AB interaction appears to be isoform specific, providing one explanation for the linkage between the apoE4 allele and an increased risk of sporadic AD. We have demonstrated that blocking the apoE/AB binding with a synthetic peptide - A?12-28P, that mimics the apoE binding site on A? and was modified for in vivo application, reduces the burden of parenchynal AB deposits and CAA, as well as preventing memory impairment in AD transgenic (Tg) mice (Sadowski et al. AJP, 2004;165:937;Sadowski et al., PNAS, 2006;103:18787). In contrast, anti-A? vaccination approaches prevent only parenchymal A? deposition without affecting the CAA burden. In addition, vaccination appears to increase the risk of perivascular hemorrhages which were absent in AD Tg animals treated with A?12-28P. In this grant proposal, we are planning to develop non-toxic peptidomimetic antagonists of the apoE/A? interaction which will be based on the A?12-28 sequence. The objectives are to improve therapeutic efficacy, BBB penetration, and biostability. Due to the inherent biomimetic character of peptidomimetics, their resistance to degradation, and ease of chemical modification, this strategy has been successfully employed in the past to develop a number of therapeutically promising compounds. Selected peptidomimetic compounds will be tested in AD Tg models including those expressing differing human apoE isoforms. This will be done to predict the therapeutic response in carriers of the various human apoE isoforms. To determine whether this form of therapy can lead to a reduction of already existing A? deposits we will perform in vivo imaging of A? plaques in AD Tg mice using transcranial two-photon microscopy. Although the primary goal of blocking the apoE/A? interaction is to prevent A? fibrillar assembly and deposition there are also several other potential benefits of this approach which we investigate in this application. Thus, we will determine the effect of blocking the apoE/A? interaction on A? and apoE clearance across the BBB, the equilibrium between A? oligomers and fibril formation, and intraneuronal accumulation of apoE/A? complexes. The overall goal of this proposal is to bring this novel therapeutic approach closer to clinical studies and to identify a lead peptidomimetic compound, which could be further developed for safe, long-term application in humans.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG031221-05
Application #
8220734
Study Section
Special Emphasis Panel (ZRG1-BST-Q (52))
Program Officer
Refolo, Lorenzo
Project Start
2008-03-15
Project End
2014-02-28
Budget Start
2012-04-01
Budget End
2014-02-28
Support Year
5
Fiscal Year
2012
Total Cost
$327,045
Indirect Cost
$134,290
Name
New York University
Department
Neurology
Type
Schools of Medicine
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Pankiewicz, Joanna E; Sanchez, Sandrine; Kirshenbaum, Kent et al. (2018) Anti-prion Protein Antibody 6D11 Restores Cellular Proteostasis of Prion Protein Through Disrupting Recycling Propagation of PrPSc and Targeting PrPSc for Lysosomal Degradation. Mol Neurobiol :
Pankiewicz, Joanna E; Sadowski, Martin J (2017) Editorial: Translational Control of APP Expression for Alzheimer Disease Therapy. Ann Pharmacol Pharm 2:
Pankiewicz, Joanna E; Baquero-Buitrago, Jairo; Sanchez, Sandrine et al. (2017) APOE Genotype Differentially Modulates Effects of Anti-A?, Passive Immunization in APP Transgenic Mice. Mol Neurodegener 12:12
Pankiewicz, Joanna E; Sadowski, Martin J (2017) APOE genotype and Alzheimer's immunotherapy. Oncotarget 8:39941-39942
Asuni, Ayodeji A; Guridi, Maitea; Pankiewicz, Joanna E et al. (2014) Modulation of amyloid precursor protein expression reduces ?-amyloid deposition in a mouse model. Ann Neurol 75:684-99
Pankiewicz, Joanna E; Guridi, Maitea; Kim, Jungsu et al. (2014) Blocking the apoE/A? interaction ameliorates A?-related pathology in APOE ?2 and ?4 targeted replacement Alzheimer model mice. Acta Neuropathol Commun 2:75
Kuszczyk, Magdalena A; Sadowski, Martin J; Antkiewicz-Michaluk, Lucyna et al. (2014) 1MeTIQ provides protection against A?-induced reduction of surface expression of synaptic proteins and inhibits H?O?-induced oxidative stress in primary hippocampal neurons. Neurotox Res 25:348-57
Asuni, Ayodeji A; Pankiewicz, Joanna E; Sadowski, Martin J (2014) Reply: To PMID 24687915. Ann Neurol 76:630-1
Kuszczyk, Magdalena A; Sanchez, Sandrine; Pankiewicz, Joanna et al. (2013) Blocking the interaction between apolipoprotein E and A? reduces intraneuronal accumulation of A? and inhibits synaptic degeneration. Am J Pathol 182:1750-68
Duszczyk, Malgorzata; Kuszczyk, Magdalena; Guridi, Maitea et al. (2012) In vivo hippocampal microdialysis reveals impairment of NMDA receptor-cGMP signaling in APP(SW) and APP(SW)/PS1(L166P) Alzheimer's transgenic mice. Neurochem Int 61:976-80

Showing the most recent 10 out of 12 publications