Iron is essential - yet toxic both in deficiency and excess. Increasingly the medical literature show that iron plays a key role in areas of human health. The focus of this research project is the essential role iron plays in bacterial growth, and hence the role of iron in human disease caused by bacteria or fungi. The goals are to characterize the mechanisms of siderophore-mediated iron uptake and to understand the role of siderophores in bacterial disease. Previous progress in this on-going project have involved the characterization of several siderophores from human pathogens, the quantitative determination and explanation of the stability or ferric siderophore complexes, the preparation and in vivo use of siderophore analogs, the characterization of the role stereochemistry at the metal center plays in the siderophore recognition and transport process and other aspects of siderophore coordination chemistry. The focus of this proposal now turns in a more microbiological direction. We will study the role of amonabactin in the virulence of Aeromonas hydrophyla, a human pathogen. The ability of this sideophore to remove iron from transferrin will probed and the gene it encodes for an enzyme in the synthesis of amonabactin, amoA, will be isolated to determined the importance of amonabactin in Aeromonas pathogenicity. Recognition and transport of ferric amonabactin will be probed using both four natural siderophores and synthetic analogs. The amonabactin receptor protein will be characterized. The siderophore for the organism that causes whooping cough in humans will be investigated with regard to its kinetic ability to remove iron, and its role in iron uptake will be probed. The latter stages of iron uptake into E.coli. mediated by enterobactin will be probed and the enterobactin esterase will be isolated and characterized. Collaborative studies on siderophores will include their biogeochemistry, marine biochemistry and the characterization of new siderophores.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Metallobiochemistry Study Section (BMT)
Program Officer
Korpela, Jukka K
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Berkeley
Schools of Arts and Sciences
United States
Zip Code
Wyckoff, Elizabeth E; Allred, Benjamin E; Raymond, Kenneth N et al. (2015) Catechol Siderophore Transport by Vibrio cholerae. J Bacteriol 197:2840-9
Fukushima, Tatsuya; Allred, Benjamin E; Raymond, Kenneth N (2014) Direct evidence of iron uptake by the Gram-positive siderophore-shuttle mechanism without iron reduction. ACS Chem Biol 9:2092-100
Naikare, Hemant; Butcher, James; Flint, Annika et al. (2013) Campylobacter jejuni ferric-enterobactin receptor CfrA is TonB3 dependent and mediates iron acquisition from structurally different catechol siderophores. Metallomics 5:988-96
Sia, Allyson K; Allred, Benjamin E; Raymond, Kenneth N (2013) Siderocalins: Siderophore binding proteins evolved for primary pathogen host defense. Curr Opin Chem Biol 17:150-7
Allred, Benjamin E; Correnti, Colin; Clifton, Matthew C et al. (2013) Siderocalin outwits the coordination chemistry of vibriobactin, a siderophore of Vibrio cholerae. ACS Chem Biol 8:1882-7
Fukushima, Tatsuya; Allred, Benjamin E; Sia, Allyson K et al. (2013) Gram-positive siderophore-shuttle with iron-exchange from Fe-siderophore to apo-siderophore by Bacillus cereus YxeB. Proc Natl Acad Sci U S A 110:13821-6
Correnti, Colin; Richardson, Vera; Sia, Allyson K et al. (2012) Siderocalin/Lcn2/NGAL/24p3 does not drive apoptosis through gentisic acid mediated iron withdrawal in hematopoietic cell lines. PLoS One 7:e43696
Fukushima, Tatsuya; Sia, Allyson K; Allred, Benjamin E et al. (2012) Bacillus cereus iron uptake protein fishes out an unstable ferric citrate trimer. Proc Natl Acad Sci U S A 109:16829-34
Correnti, Colin; Clifton, Matthew C; Abergel, Rebecca J et al. (2011) Galline Ex-FABP is an antibacterial siderocalin and a lysophosphatidic acid sensor functioning through dual ligand specificities. Structure 19:1796-806
Hoette, Trisha M; Clifton, Matthew C; Zawadzka, Anna M et al. (2011) Immune interference in Mycobacterium tuberculosis intracellular iron acquisition through siderocalin recognition of carboxymycobactins. ACS Chem Biol 6:1327-31

Showing the most recent 10 out of 45 publications