This project is concerned with the molecular mechanisms that regulate lipid synthesis and degradation in bacterial. The general approach is to isolate mutants of Eschuechia coli defective in lipid synthesis or degradation. These mutants are then studied by a combination of biochemical, genetic, physiological, and biophysical methods. Since regulation of lipid metabolism bears directly on membrane composition and function, knowledge of these mechanisms is needed for an understanding of the etiology of defective cellular membranes observed in many diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI015650-08
Application #
3126315
Study Section
Microbial Physiology and Genetics Subcommittee 2 (MBC)
Project Start
1979-01-01
Project End
1988-12-31
Budget Start
1985-01-01
Budget End
1985-12-31
Support Year
8
Fiscal Year
1985
Total Cost
Indirect Cost
Name
University of Illinois Urbana-Champaign
Department
Type
Schools of Arts and Sciences
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Cronan, John E (2018) Advances in synthesis of biotin and assembly of lipoic acid. Curr Opin Chem Biol 47:60-66
Manandhar, Miglena; Cronan, John E (2018) A Canonical Biotin Synthesis Enzyme, 8-Amino-7-Oxononanoate Synthase (BioF), Utilizes Different Acyl Chain Donors in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol 84:
Cao, Xinyun; Zhu, Lei; Song, Xuejiao et al. (2018) Protein moonlighting elucidates the essential human pathway catalyzing lipoic acid assembly on its cognate enzymes. Proc Natl Acad Sci U S A 115:E7063-E7072
Srinivas, Swaminath; Cronan, John E (2017) An Eight-Residue Deletion in Escherichia coli FabG Causes Temperature-Sensitive Growth and Lipid Synthesis Plus Resistance to the Calmodulin Inhibitor Trifluoperazine. J Bacteriol 199:
Manandhar, Miglena; Cronan, John E (2017) Pimelic acid, the first precursor of the Bacillus subtilis biotin synthesis pathway, exists as the free acid and is assembled by fatty acid synthesis. Mol Microbiol 104:595-607
Cao, Xinyun; Zhu, Lei; Hu, Zhe et al. (2017) Expression and Activity of the BioH Esterase of Biotin Synthesis is Independent of Genome Context. Sci Rep 7:2141
Bi, Hongkai; Zhu, Lei; Jia, Jia et al. (2016) A Biotin Biosynthesis Gene Restricted to Helicobacter. Sci Rep 6:21162
Henke, Sarah K; Cronan, John E (2016) The Staphylococcus aureus group II biotin protein ligase BirA is an effective regulator of biotin operon transcription and requires the DNA binding domain for full enzymatic activity. Mol Microbiol 102:417-429
Cronan, John E (2016) pBR322 vectors having tetracycline-dependent replication. Plasmid 84-85:20-6
Bi, Hongkai; Zhu, Lei; Jia, Jia et al. (2016) Unsaturated Fatty Acid Synthesis in the Gastric Pathogen Helicobacter pylori Proceeds via a Backtracking Mechanism. Cell Chem Biol 23:1480-1489

Showing the most recent 10 out of 165 publications