The long range goal of my research is to study the regulation of gene expression of DNA tumor virus genomes and use this knowledge to understand the mechanism of eukaryotic gene experession and virus-host cell interactions. The principles governing the molecular basis of regulatory controls in eukaryotes are far from clear. DNA tumor viruses replicate in animal cell nuclei and their genes are regulated in eukaryotic cellular environment. Therefore, they provide a challenging model system to study the control of eukaryotic gene expression. Specifically, we propose to study three aspects of adenovirus type 5 gene expression during the tenure of the proposed grant. They are: (1) Mutational analysis of DNA sequences involved in the promotor function of early transcriptional region 2 (E-2A) early and late promotors at the level of viral chromosome and to study the relationship between the regulation of transcription from the two E-2A promotors and E1-A gene products using an SV40 host-vector system. (2) Identify and analyze in vivo, the RNA polymerase II transcriptional termination signals using Ad2 major late transcription unit as a model system. (3) In the future, we propose to continue our DNA tumor virus studies and attempt to identify the role of tripartite leader segments of adenoviral late mRNAs in their biogenesis and translation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI020156-03
Application #
3129641
Study Section
Virology Study Section (VR)
Project Start
1983-08-01
Project End
1986-07-31
Budget Start
1985-08-01
Budget End
1986-07-31
Support Year
3
Fiscal Year
1985
Total Cost
Indirect Cost
Name
Northwestern University at Chicago
Department
Type
School of Medicine & Dentistry
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Buchmann, A M; Swaminathan, S; Thimmapaya, B (1998) Regulation of cellular genes in a chromosomal context by the retinoblastoma tumor suppressor protein. Mol Cell Biol 18:4565-76
Swaminathan, S; Rajan, P; Savinova, O et al. (1996) Simian virus 40 large-T bypasses the translational block imposed by the phosphorylation of elF-2 alpha. Virology 219:321-3
Somasundaram, K; Jayaraman, G; Williams, T et al. (1996) Repression of a matrix metalloprotease gene by E1A correlates with its ability to bind to cell type-specific transcription factor AP-2. Proc Natl Acad Sci U S A 93:3088-93
Porras, A; Bennett, J; Howe, A et al. (1996) A novel simian virus 40 early-region domain mediates transactivation of the cyclin A promoter by small-t antigen and is required for transformation in small-t antigen-dependent assays. J Virol 70:6902-8
Manohar, C F; Furtado, M R (1995) Mutational analysis of the adenovirus E2-early promoter in fission yeast Schizosaccharomyces pombe. Biochem Mol Biol Int 37:653-63
Rahman, A; Malhotra, P; Dhar, R et al. (1995) Effect of single-base substitutions in the central domain of virus-associated RNA I on its function. J Virol 69:4299-307
Ghadge, G D; Malhotra, P; Furtado, M R et al. (1994) In vitro analysis of virus-associated RNA I (VAI RNA): inhibition of the double-stranded RNA-activated protein kinase PKR by VAI RNA mutants correlates with the in vivo phenotype and the structural integrity of the central domain. J Virol 68:4137-51
Radosevich, J A; Ghadge, G D; Haines, G K et al. (1994) Characterization of the mouse monoclonal antibody TJ4C4 directed at human p68 kinase. Tumour Biol 15:255-62
Malhotra, P; Manohar, C F; Swaminathan, S et al. (1993) E2F site activates transcription in fission yeast Schizosaccharomyces pombe and binds to a 30-kDa transcription factor. J Biol Chem 268:20392-401
Swaminathan, S; Malhotra, P; Manohar, C F et al. (1993) Activation of a dual adenovirus promoter containing nonconsensus TATA motifs in Schizosaccharomyces pombe: role of TATA sequences in the efficiency of transcription. Nucleic Acids Res 21:2737-46

Showing the most recent 10 out of 18 publications