EXCEED THE SPACE PROVIDED. The goal of this proposal is to understand the mechanisms by which DNA adenine methylase (DAM), leucine- responsive regulatory protein (Lrp), and PapI orchestrate the reversible switch between OFF and ON Pap pili expression states in uropathogenic Escherichia coli (UPEC). Since Pap pili are an essential virulence determinant of UPEC, this work has direct application to addressing the problem of urinary tract infections. This work will serve as a paradigm to understand how DNA methylation patterns control heritable gene expression states. The core switch involves PapI-dependent translocation of Lrp between pap promoter proximal sites 1,2,3 and.distal sites 4,5,6. The methylation states of two GATC sites within the central pap sites 2 and 5 (GATC p_ and GATC _, respectively) control binding of Lrp and Lrp-PapI. Binding of Lrp to promoter proximal sites represses pap transcription whereas binding of Lrp to distal sites is essential for activation of pap transcription.
The first aim i s to determine how PapI and DAM control binding of Lrp to sites 1,2,3 and 4,5,6. The hypothesis that PapI enhances binding of Lrp to sites 2 and 5 by interacting with pap DNA sequences and Lrp in a ternary complex will be tested. The base-pair contacts between Lrp- PapI and sites 2 and 5 will be identified by missing contact, SELEX, and methylation analyses. Regulatory mutant pap DNA's which bind Lrp normally but are no longer PapI-responsive will be used to test the hypothesis that methylation of GATC _X facilitates OFF to ON switching by specifically blocking PapI enhancement of Lrp binding at sites 1,2,3.
The second aim i s to identify amino acids of Lrp that play important roles in responsiveness to PapI and DNA methylation, which will be accomplished by isolation of lrp mutants with altered responses to these factors and by a genetic suppressor approach using pap mutants isolated in Aim 1. Photocrosslinking studies are proposed to directly identify amino acids within Lrp that interact with sites 2 and 5, and to determine how these interactions are altered by GATC site methylation. Amino acids at the protein-protein binding interface of PapI and Lrp will be identified using yeast one-hybrid and 13-1actamase complementation analyses.
The third aim i s to analyze real-time in vivo dynamics of phase variation which will include a test of the hypothesis that DNA replication is required for Pap phase switching. This will be carried out by monitoring Pap pili gene expression by fluorescence activated cell sorting in synchronized cells following induction of PapI. Further analysis of the methylation states of the pap GATC sites in wild-type and regulator mutant pap operons following passage of the replication fork will be done to link in vitro studies with in vivo switch dynamics. These studies will also provide a detailed framework for understanding epigenetic regulatory mechanisms in other prokaryotes and eukaryotes. PERFORMANCE SITE ========================================Section End===========================================

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI023348-16
Application #
6828253
Study Section
Special Emphasis Panel (ZRG1-MBC-2 (01))
Program Officer
Korpela, Jukka K
Project Start
1987-04-01
Project End
2006-10-31
Budget Start
2004-11-01
Budget End
2005-10-31
Support Year
16
Fiscal Year
2005
Total Cost
$292,592
Indirect Cost
Name
University of California Santa Barbara
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
094878394
City
Santa Barbara
State
CA
Country
United States
Zip Code
93106
Weyand, N J; Braaten, B A; van der Woude, M et al. (2001) The essential role of the promoter-proximal subunit of CAP in pap phase variation: Lrp- and helical phase-dependent activation of papBA transcription by CAP from -215. Mol Microbiol 39:1504-22
Hale, W B; van der Woude, M W; Braaten, B A et al. (1998) Regulation of uropathogenic Escherichia coli adhesin expression by DNA methylation. Mol Genet Metab 65:191-6
Kaltenbach, L; Braaten, B; Tucker, J et al. (1998) Use of a two-color genetic screen to identify a domain of the global regulator Lrp that is specifically required for pap phase variation. J Bacteriol 180:1224-31
van der Woude, M; Braaten, B; Low, D (1996) Epigenetic phase variation of the pap operon in Escherichia coli. Trends Microbiol 4:5-9
Kaltenbach, L S; Braaten, B A; Low, D A (1995) Specific binding of PapI to Lrp-pap DNA complexes. J Bacteriol 177:6449-55
Nou, X; Braaten, B; Kaltenbach, L et al. (1995) Differential binding of Lrp to two sets of pap DNA binding sites mediated by Pap I regulates Pap phase variation in Escherichia coli. EMBO J 14:5785-97
van der Woude, M W; Kaltenbach, L S; Low, D A (1995) Leucine-responsive regulatory protein plays dual roles as both an activator and a repressor of the Escherichia coli pap fimbrial operon. Mol Microbiol 17:303-12
Hale, W B; van der Woude, M W; Low, D A (1994) Analysis of nonmethylated GATC sites in the Escherichia coli chromosome and identification of sites that are differentially methylated in response to environmental stimuli. J Bacteriol 176:3438-41
van der Woude, M W; Low, D A (1994) Leucine-responsive regulatory protein and deoxyadenosine methylase control the phase variation and expression of the sfa and daa pili operons in Escherichia coli. Mol Microbiol 11:605-18
Braaten, B A; Nou, X; Kaltenbach, L S et al. (1994) Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E. coli. Cell 76:577-88

Showing the most recent 10 out of 12 publications