Decay accelerating factor (DAF) is a surface glycoprotein which protects host cells from attack by autologous complement. Complement-sensitive erythrocytes of patients with paroxysmal nocturnal hemoglobinuria (PNH) lack DAF. The affected cells, however, also lack acetylcholinesterase (AChE) as well as other membrane factors. Recent studies in our laboratory have revealed that DAF is anchored to cells by a C-terminal glycolipid structure which closely resembles that in AChE. This unconventional anchor is similar to C-terminal structures of Thy- 1 antigen and of trypanosome variant surface glycoproteins (VSGs) which are thought to be add to these surface proteins during a post-translational modification. We have found that soluble DAF molecules which resemble hydrophilic forms of these other proteins are present in numerous bodily fluids. The proposed experiments are directed at 1) analysis of the distribution of DAF in tissues, further structural characterization of DAF forms, and investigation of the mechanism of formation of the extracellular DAF species, 2) identification of biosynthetic precursors to study glycolipid anchor assembly/attachment in human cells and exploitation of the probes to characterize the steps involved in mDAF anchor incorporation, 3) isolation of DAF cDNA and use of the cDNA to establish whether a C-terminal extension peptide absent from DAF protein is predicted as in VSG and Thy-1 cDNA and to determine whether DAF genomic DNA and DAF message are normal in PNH, and 4) investigation of mDAF biosynthesis with specific attention to glycolipid anchor attachment in affected lymphocytes of PNH patients and characterization of an abnormalities. The information gained from the proposed studies of DAF could not only have relevance for PNH and molecular mechanisms accounting for the natural ability of host cells to resist injury from autologous effector systems, but could also provide insights about the expression of other glycolipid anchor- associated proteins.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
1R01AI024220-01
Application #
3137051
Study Section
Allergy and Immunology Study Section (ALY)
Project Start
1986-12-01
Project End
1987-08-31
Budget Start
1986-12-01
Budget End
1987-08-31
Support Year
1
Fiscal Year
1987
Total Cost
Indirect Cost
Name
Case Western Reserve University
Department
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Tykocinski, M L; Shu, H K; Ayers, D J et al. (1988) Glycolipid reanchoring of T-lymphocyte surface antigen CD8 using the 3' end sequence of decay-accelerating factor's mRNA. Proc Natl Acad Sci U S A 85:3555-9
Stafford, H A; Tykocinski, M L; Lublin, D M et al. (1988) Normal polymorphic variations and transcription of the decay accelerating factor gene in paroxysmal nocturnal hemoglobinuria cells. Proc Natl Acad Sci U S A 85:880-4
Cheung, N K; Walter, E I; Smith-Mensah, W H et al. (1988) Decay-accelerating factor protects human tumor cells from complement-mediated cytotoxicity in vitro. J Clin Invest 81:1122-8