Tuberculosis remains a devastating disease of mankind resulting in 3 million deaths per year. There are 10 million new cases of tuberculosis worldwide, and for the first time after a 32 year decline, the number of new cases of tuberculosis in the United States has increased for the last 3 years. In New York city alone, there was a 36% rise in the number of tuberculosis cases, predominantly in the black and hispanic populations. This rise of tuberculosis is most likely associated with the increase in AIDS patients and so is still likely to worsen. M. avium infections are a primary cause of fatality of AIDS patients. Although, M. tuberculosis, the causative agent of tuberculosis, is one of earliest described pathogens of man, analysis of this organism or any other mycobacterium by genetic means has been previously impossible. The goal of this proposal is to develop the systems and methodology, using modern recombinant DNA technology, to permit genetic analysis of the mycobacteria. By developing the first efficient transfection system and a novel E. coli-mycobacteria shuttle vector, we have introduced recombinant DNA molecules into both M. smegmatis and BCG vaccine strains for the first time. This novel vector, termed a shuttle plasmid, replicates in mycobacteria as a phage and in E. coli as a plasmid. This vector has been successfully used to introduce and stably express the first selectable marker gene for mycobacteria genetic research. We plan to use these genetic approaches to analyze the pathogenesis of mycobacteria, which could lead to new avenues for drug design. These methods will contribute to the development of BCG, currently the most widely used vaccine in the world, into a recombinant multivaccine vehicle, which would provide a novel approach to development of vaccines where T cell memory and effector responses are important.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI026170-05
Application #
3139869
Study Section
Bacteriology and Mycology Subcommittee 2 (BM)
Project Start
1988-12-01
Project End
1993-11-30
Budget Start
1992-12-01
Budget End
1993-11-30
Support Year
5
Fiscal Year
1993
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
Schools of Medicine
DUNS #
009095365
City
Bronx
State
NY
Country
United States
Zip Code
10461
Vilchèze, Catherine; Copeland, Jacqueline; Keiser, Tracy L et al. (2018) Rational Design of Biosafety Level 2-Approved, Multidrug-Resistant Strains of Mycobacterium tuberculosis through Nutrient Auxotrophy. MBio 9:
Harbut, Michael B; Yang, Baiyuan; Liu, Renhe et al. (2018) Small Molecules Targeting Mycobacterium tuberculosis Type II NADH Dehydrogenase Exhibit Antimycobacterial Activity. Angew Chem Int Ed Engl 57:3478-3482
Tiwari, Sangeeta; van Tonder, Andries J; Vilchèze, Catherine et al. (2018) Arginine-deprivation-induced oxidative damage sterilizes Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 115:9779-9784
Vilchèze, Catherine; Kim, John; Jacobs Jr, William R (2018) Vitamin C Potentiates the Killing of Mycobacterium tuberculosis by the First-Line Tuberculosis Drugs Isoniazid and Rifampin in Mice. Antimicrob Agents Chemother 62:
Bhatt, Kiranmai; Machado, Henrique; Osório, Nuno S et al. (2018) A Nonribosomal Peptide Synthase Gene Driving Virulence in Mycobacterium tuberculosis. mSphere 3:
Stratton, Thomas P; Perryman, Alexander L; Vilchèze, Catherine et al. (2017) Addressing the Metabolic Stability of Antituberculars through Machine Learning. ACS Med Chem Lett 8:1099-1104
Hanauer, David I; Graham, Mark J; SEA-PHAGES et al. (2017) An inclusive Research Education Community (iREC): Impact of the SEA-PHAGES program on research outcomes and student learning. Proc Natl Acad Sci U S A 114:13531-13536
Glass, Lisa N; Swapna, Ganduri; Chavadi, Sivagami Sundaram et al. (2017) Mycobacterium tuberculosis universal stress protein Rv2623 interacts with the putative ATP binding cassette (ABC) transporter Rv1747 to regulate mycobacterial growth. PLoS Pathog 13:e1006515
Saito, Kohta; Warrier, Thulasi; Somersan-Karakaya, Selin et al. (2017) Rifamycin action on RNA polymerase in antibiotic-tolerant Mycobacterium tuberculosis results in differentially detectable populations. Proc Natl Acad Sci U S A 114:E4832-E4840
Kerantzas, Christopher A; Jacobs Jr, William R (2017) Origins of Combination Therapy for Tuberculosis: Lessons for Future Antimicrobial Development and Application. MBio 8:

Showing the most recent 10 out of 90 publications