Acquired immunodeficiency Syndrome (AIDS) is characterized by a breakdown in the immune system which is manifested in the form of serious opportunistic infections. Treatment of such infections is often inadequate for a variety of reasons, including the lack of effective antimicrobial therapy. The opportunistic infections most commonly associated with AIDS are parasitic (pneumocystosis, toxoplasmosis, cryptosporidiosis), fungal (candidiasis, cryptococcosis), bacterial (mycobacteriosis), and viral (herpes simplex and cytomegalovirus). Historically, most bacterial infections and localized fungal infections have been effectively treated with one of the numerous clinically available antibiotics. However, the need for new, more effective and less toxic antibiotics for the treatment of disseminated fungal and mycobacterial infections is obvious in light of the significant toxicities and failure rates of the currently available agents. The discovery of new antibiotics has in the past successfully relied primarily upon the isolation of such agents form natural sources. The major advantage of this approach over chemical synthesis or modification of existing agents is the likelihood of identifying new prototype drugs with quite different chemical structures, and hence, less likelihood of similar toxicities and cross-resistance. Although microorganisms have traditionally served as the primary source of new antibiotics, it has recently been shown that higher plants also serve as sources for a number of diverse antimicrobial agents. The objective of this project is to discover new prototype antibiotics with potential utility specifically for the treatment of opportunistic disseminated mycoses and mycobacteriosis. This goal will be accomplished by the initial in vitro evaluation of antifungel and antimycobacterial activity of extracts of higher plants. Plant extracts which show good activity will be fractionated and purified using a bioassay-directed scheme. This approach ensures that relatively little time and effort will be wasted in isolating inactive materials. Pure active compounds with significant minimum inhibitory concentrations (MIC) will be evaluated for in vivo efficacy in established animal models of disseminated mycosis and mycobacteriosis in order to determine their potential clinical utility.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI027094-02
Application #
3141177
Study Section
Special Emphasis Panel (ARR (V1))
Project Start
1989-07-01
Project End
1992-06-30
Budget Start
1990-07-01
Budget End
1991-06-30
Support Year
2
Fiscal Year
1990
Total Cost
Indirect Cost
Name
University of Mississippi
Department
Type
Schools of Pharmacy
DUNS #
City
University
State
MS
Country
United States
Zip Code
38677
Shenmar, Kitika; Sharma, Krishna K; Wangoo, Nishima et al. (2017) Synthesis, stability and mechanistic studies of potent anticryptococcal hexapeptides. Eur J Med Chem 132:192-203
Tripathi, Siddharth K; Xu, Tao; Feng, Qin et al. (2017) Two plant-derived aporphinoid alkaloids exert their antifungal activity by disrupting mitochondrial iron-sulfur cluster biosynthesis. J Biol Chem 292:16578-16593
Ferreira, Mariana C; Cantrell, Charles L; Duke, Stephen O et al. (2017) New Pesticidal Diterpenoids from Vellozia gigantea (Velloziaceae), an Endemic Neotropical Plant Living in the Endangered Brazilian Biome Rupestrian Grasslands. Molecules 22:
Crockett, Sara L; Kunert, Olaf; Pferschy-Wenzig, Eva-Maria et al. (2016) Phloroglucinol and Terpenoid Derivatives from Hypericum cistifolium and H. galioides (Hypericaceae). Front Plant Sci 7:961
Gonçalves, Vívian N; Cantrell, Charles L; Wedge, David E et al. (2016) Fungi associated with rocks of the Atacama Desert: taxonomy, distribution, diversity, ecology and bioprospection for bioactive compounds. Environ Microbiol 18:232-45
Ravu, Ranga Rao; Jacob, Melissa R; Jeffries, Cynthia et al. (2015) LC-MS- and (1)H NMR Spectroscopy-Guided Identification of Antifungal Diterpenoids from Sagittaria latifolia. J Nat Prod 78:2255-9
Kushwaha, Avadhesh; Jacob, Melissa; Shiva Kumar, H N et al. (2015) Trans-ungual delivery of itraconazole hydrochloride by iontophoresis. Drug Dev Ind Pharm 41:1089-94
Moawad, Abeer; Hetta, Mona; Zjawiony, Jordan K et al. (2014) Two new dihydroamentoflavone glycosides from Cycas revoluta. Nat Prod Res 28:41-7
Ahmed, Marwa H; Ibrahim, Mohamed Ali; Zhang, Jin et al. (2014) Methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis and Enterococcus faecium active dimeric isobutyrylphloroglucinol from Ivesia gordonii. Nat Prod Commun 9:221-4
Falodun, Abiodun; Imieje, Vincent; Erharuyi, Osayewenre et al. (2014) Evaluation of three medicinal plant extracts against Plasmodium falciparum and selected microganisms. Afr J Tradit Complement Altern Med 11:142-6

Showing the most recent 10 out of 113 publications