Chronic viral infections are characterized by a state of T cell dysfunction that is associated with expression of the PD-1 (programmed cell death 1) inhibitory receptor. A better understanding of the mechanisms that regulate CD8 T cell responses during chronic viral infection is required to improve immunotherapies that restore function in exhausted CD8 T cells. We have recently identified a novel population of virus specific CD8 T cells that act as stem cells to maintain T cell responses during chronic infection of mice with lymphocytic choriomeningitis virus (LCMV). These stem-like LCMV specific CD8 T cells are found in the lymphoid tissues where they reside predominantly in the T cell zones along with nave CD8 T cells. They act as stem cells by undergoing a slow self-renewal and can also differentiate to give rise to the terminally differentiated CD8 T cells that are found at the major sites of infection in lymphoid as well as non-lymphoid tissues. Most importantly, the proliferative burst of T cells that is seen after PD-1 blockade comes almost exclusively from this stem-like CD8 T cell subset. Our studies have been confirmed and extended by others who have found similar CD8 T cells in other chronic viral infections of mice and also in chronic infections of non-human primates and humans. The studies proposed in the application are now focused on understanding how these virus specific stem-like CD8 T cells are generated and maintained during chronic infection and how this information can be used to develop rational approaches for optimizing PD-1 directed immunotherapy. The following specific aims are proposed to achieve these goals:
Specific aim 1 : To understand how the generation and maintenance of virus specific stem-like CD8 T cells is regulated during chronic viral infection.
Specific aim 2 : To develop strategies for enhancing virus specific stem-like CD8 T cells and optimizing PD-1 directed immunotherapy.

Public Health Relevance

Memory CD8 T cells are an essential component of protective immunity, and generating effective memory CD8 T cell populations with large quantity and superior quality is a major goal of successful vaccines against chronic viral infections. Uncovering the mechanisms that give us a better understanding of the memory T cell populations during chronic viral infection could lead to establishing new and more specific molecular targets for vaccine development and chronic viral control. !

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Dupuy, Lesley Conrad
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
Schools of Medicine
United States
Zip Code
Furuta, Yousuke; Komeno, Takashi; Nakamura, Takaaki (2017) Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci 93:449-463
Araki, Koichi; Morita, Masahiro; Bederman, Annelise G et al. (2017) Translation is actively regulated during the differentiation of CD8+ effector T cells. Nat Immunol 18:1046-1057
Youngblood, Ben; Hale, J Scott; Kissick, Haydn T et al. (2017) Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552:404-409
Lee, Junghwa; Hashimoto, Masao; Im, Se Jin et al. (2017) Adenovirus Serotype 5 Vaccination Results in Suboptimal CD4 T Helper 1 Responses in Mice. J Virol 91:
Ye, Lilin; Lee, Junghwa; Xu, Lifan et al. (2017) mTOR Promotes Antiviral Humoral Immunity by Differentially Regulating CD4 Helper T Cell and B Cell Responses. J Virol 91:
Kamphorst, Alice O; Wieland, Andreas; Nasti, Tahseen et al. (2017) Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355:1423-1427
Ahn, Eunseon; Youngblood, Ben; Lee, Junghwa et al. (2016) Demethylation of the PD-1 Promoter Is Imprinted during the Effector Phase of CD8 T Cell Exhaustion. J Virol 90:8934-46
Im, Se Jin; Hashimoto, Masao; Gerner, Michael Y et al. (2016) Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537:417-421
Kamphorst, Alice O; Araki, Koichi; Ahmed, Rafi (2015) Beyond adjuvants: immunomodulation strategies to enhance T cell immunity. Vaccine 33 Suppl 2:B21-8
Lee, Junghwa; Ahn, Eunseon; Kissick, Haydn T et al. (2015) Reinvigorating Exhausted T Cells by Blockade of the PD-1 Pathway. For Immunopathol Dis Therap 6:7-17

Showing the most recent 10 out of 202 publications