Legionella pneumophila is a facultative intracellular pathogen that grows inside protozoans in fresh water sources. Susceptible humans may develop a fulminant pneumonia called Legionnaires disease following inhalation of contaminated water aerosols. This opportunistic pathogen contributes significantly to community-acquired and nosocomial pneumonia infection rated and is associated with serious morbidity and mortality. During human infection, and in animal models, virulent L. pneumophila elicits a cellular immune response, including recruitment and activation of macrophages, which serve as the primary cellular target for entry and subsequent growth and the production of specific cytokines. A series of prior studies has demonstrated that the outcome of the interaction with macrophages depends upon the expression of L. pneumophila genes, some of which may be regulated by intracellular environmental signals. Only a few genes that apparently are involved in this interaction have been discovered, and the definitive role of any of these in the pathogenesis of infection and disease in unknown. Studies on a L. pneumophila mutant that lacks the capacity to produce protease strongly suggest that virulence was attenuated in an animal model, and furthermore, that this effect might be directly related to impairment of the host s immune response, including cytokine production. Other studies demonstrated that prior growth of laboratory passaged strains in Acanthamoeba enhanced the invasiveness of L. pneumophila into macrophages. This was associated with the expression of new polypeptides.
The specific aims of the proposal are to: 1) further define the contribution of the protease protein to L. pneumophila pathogenesis and host immune response: and 2) detect and define the role of new genes, not yet discovered, that are involved in intracellular growth in eukaryotic cells. Dr. Tompkins propose to study the cell biology of he interaction of macrophages with wild-type strains and mutants to characterize and define the steps in intracellular growth governed by each gene product. She will also use two new genetic selection methods to isolate and identify new genes involved in intracellular growth. Thus, the proposal incorporates novel molecular and genetic methods and utilizes contemporary microscopy techniques, including laser confocal microscopy, to further define and characterize the cell biology of Legionella in eukaryotic cells.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
2R01AI030618-06A1
Application #
2003643
Study Section
Bacteriology and Mycology Subcommittee 2 (BM)
Project Start
1991-03-01
Project End
2002-01-31
Budget Start
1997-02-01
Budget End
1998-01-31
Support Year
6
Fiscal Year
1997
Total Cost
Indirect Cost
Name
Stanford University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
800771545
City
Stanford
State
CA
Country
United States
Zip Code
94305
Martin, D W; Mohr, C D (2000) Invasion and intracellular survival of Burkholderia cepacia. Infect Immun 68:24-9
Edelstein, P H; Edelstein, M A; Higa, F et al. (1999) Discovery of virulence genes of Legionella pneumophila by using signature tagged mutagenesis in a guinea pig pneumonia model. Proc Natl Acad Sci U S A 96:8190-5
Cirillo, J D; Cirillo, S L; Yan, L et al. (1999) Intracellular growth in Acanthamoeba castellanii affects monocyte entry mechanisms and enhances virulence of Legionella pneumophila. Infect Immun 67:4427-34
Cirillo, J D; Falkow, S; Tompkins, L S et al. (1997) Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect Immun 65:3759-67
Moffat, J F; Edelstein, P H; Regula Jr, D P et al. (1994) Effects of an isogenic Zn-metalloprotease-deficient mutant of Legionella pneumophila in a guinea-pig pneumonia model. Mol Microbiol 12:693-705
Cirillo, J D; Falkow, S; Tompkins, L S (1994) Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion. Infect Immun 62:3254-61
Moffat, J F; Black, W J; Tompkins, L S (1994) Further molecular characterization of the cloned Legionella pneumophila zinc metalloprotease. Infect Immun 62:751-3
Lowry, P W; Tompkins, L S (1993) Nosocomial legionellosis: a review of pulmonary and extrapulmonary syndromes. Am J Infect Control 21:21-7