H2-M3 is an MHC class Ib molecule which preferentially binds N-Formylated peptides. Since all prokaryotes initiate protein synthesis with N-formylated methionine, the peptide binding specificity of M3 is especially suited for presenting these unique microbial antigens to T cells. Consistent with this notion, mice infected with Listeria monocytogenes, generate CD8+ CTLs that recognize N-formylated Listeria peptides presented by M3. Recent studies have shown that M3-restricted T cells expand rapidly during primary Listeria infection, prior to the expansion of class Ia-restricted T cells. However, the expansion of M3-restricted T cells following secondary Listeria infection was rather limited compared with the vigorous recall response of class Ia-restricted T cells. The mechanisms underlying the distinct kinetics of the M3-restricted response are not clear and the significance of M3-restricted T cells in bacterial infection remains to be defined. This application seeks to understand how M3 presents bacterial antigens and how M3 contributes to shaping the T cell repertoire during bacterial infections. First, we will use biochemical and cell biology approaches to examine the structural requirements for controlling intracellular trafficking of M3 and to elucidate the pathway for presentation of both endogenous and exogenous listerial antigens by M3. Secondly, we will compare T cell development in the M3-deficient and control mice to determine whether M3 is responsible for selecting unique subset(s) of T cells. Adoptive transfer of naive and memory T cells from D7 transgenic mice, expressing TCR specific for M3/LemA complexes, will be performed to investigate whether M3-restricted T cells have requirements similar to class Ia-restricted T cells for the maintenance of the periphery T cell pools. Thirdly, we will infect M3-deficient, class Ia-deficient and control mice with Listeria to examine the relative contribution of class Ia-restricted and M3-restricted responses during Listeria infection, and to determine whether lack of an early M3 response could alter the kinetics and magnitude of class Ia-restricted response. Finally, we will extend our study to explore the functional role of M3-restricted T cells in immunity against Mycobaterium tuberculosis. Study of M3-restricted T cells responses against two distinct groups of intracellular bacteria would shed light on whether early and potent M3-restricted T cell response is unique to Listeria infection or is a general host defense mechanism against intracellular bacterial infection. Understanding the inter-relationship between class Ia-restricted and class Ib-restricted responses during the generation of specific immunity may facilitate the development of more effective vaccines.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI040310-10
Application #
6897222
Study Section
Special Emphasis Panel (ZRG1-SSS-F (01))
Program Officer
Esch, Thomas R
Project Start
1996-07-01
Project End
2007-05-31
Budget Start
2005-06-01
Budget End
2007-05-31
Support Year
10
Fiscal Year
2005
Total Cost
$337,478
Indirect Cost
Name
University of Chicago
Department
Pathology
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Bian, Yao; Shang, Shaobin; Siddiqui, Sarah et al. (2017) MHC Ib molecule Qa-1 presents Mycobacterium tuberculosis peptide antigens to CD8+ T cells and contributes to protection against infection. PLoS Pathog 13:e1006384
Zhao, Jie; Siddiqui, Sarah; Shang, Shaobin et al. (2015) Mycolic acid-specific T cells protect against Mycobacterium tuberculosis infection in a humanized transgenic mouse model. Elife 4:
Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya et al. (2014) The adaptor protein SAP regulates type II NKT-cell development, cytokine production, and cytotoxicity against lymphoma. Eur J Immunol 44:3646-57
Sena, Laura A; Li, Sha; Jairaman, Amit et al. (2013) Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38:225-36
Bediako, Yaw; Bian, Yao; Zhang, Hong et al. (2012) SAP is required for the development of innate phenotype in H2-M3--restricted Cd8(+) T cells. J Immunol 189:4787-96
Andrews, Daniel M; Sullivan, Lucy C; Baschuk, Nikola et al. (2012) Recognition of the nonclassical MHC class I molecule H2-M3 by the receptor Ly49A regulates the licensing and activation of NK cells. Nat Immunol 13:1171-7
Cho, Hoonsik; Choi, Hak-Jong; Xu, Honglin et al. (2011) Nonconventional CD8+ T cell responses to Listeria infection in mice lacking MHC class Ia and H2-M3. J Immunol 186:489-98
Cho, Hoonsik; Bediako, Yaw; Xu, Honglin et al. (2011) Positive selecting cell type determines the phenotype of MHC class Ib-restricted CD8+ T cells. Proc Natl Acad Sci U S A 108:13241-6
Wang, T; Ahmed, E B; Chen, L et al. (2010) Infection with the intracellular bacterium, Listeria monocytogenes, overrides established tolerance in a mouse cardiac allograft model. Am J Transplant 10:1524-33
Felio, Kyrie; Nguyen, Hanh; Dascher, Christopher C et al. (2009) CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice. J Exp Med 206:2497-509

Showing the most recent 10 out of 13 publications