The capacity of N. gonorrhoeae to evade innate defenses in the female genital tract is hypothesized to be multifactorial and complex. Antioxidant factors may protect gonococci from killing by reactive oxygen species produced by phagocytes. Sialyltranferase (Lst) and other factors promote evasion of complement-mediated defenses. Evidence that these factors protect gonococci against evasion of innate host defenses is based primarily on in vitro assays. With the support of the first award, we developed the first reproducible small animal model of gonococcal genital tract infection. This model provides us with a valuable and unique research tool to test gonococcal interactions with host innate defenses. To satisfy the need for in vivo studies on factors hypothesized to contribute to evasion of PMN and complement-mediated killing, here we will i.) measure the relative contribution of the known antioxidant defenses of N. gonorrhoeae (catalase, cytochrome C peroxidase, manganese uptake, methionine sulfoxide reductase) in protection from killing by human PMNs and in survival during experimental murine genital tract infection. We will construct single and double mutants in genes hypothesized to directly defend against oxidative stress (kat, ccp, mntC, msrA), and test their capacity to survive opsonophagocytic killing by human and murine PMNs, and to infect normal mice and NADPH oxidase-deficient mice; ii.) define the role of gonococcal sialyltransferase in conferring resistance to opsonophagocytic killing by murine PMNs and in enhancing survival of N. gonorrhoeae in the murine lower genital tract We will determine if Lst-deficient gonococci are more senstive to PMN killing due to increased uptake or the induction of a stronger respiratory burst. We will utilize C3 and C4-deficient mice and NADPH-deficient mice to test predictions made from PMN killing assays, iii.) Determine the basis for the observed increased infectivity of anaerobically grown N. gonorrhoeae for estradiol-treated mice and for increased resistance to the bactericidal activity of normal human serum. We will test mutants in genes that may confer increased survival in vivo as identified by DNA microarray technology to see if they are responsible for anaerobically-induced increased infectivity. We will assess the role of anaerobically induced nitrite reductase (AniA) in conferring an advantage in vivo and increased resistance to serum by testing the infectivity of an aniA mutant in mice, and by utilizing AniA-specific antiserum to block interactions between anaerobically grown gonococci and complement. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI042053-09
Application #
7238636
Study Section
Bacteriology and Mycology Subcommittee 2 (BM)
Program Officer
Hiltke, Thomas J
Project Start
1999-02-01
Project End
2009-05-31
Budget Start
2007-06-01
Budget End
2008-05-31
Support Year
9
Fiscal Year
2007
Total Cost
$248,229
Indirect Cost
Name
Henry M. Jackson Fdn for the Adv Mil/Med
Department
Type
DUNS #
144676566
City
Bethesda
State
MD
Country
United States
Zip Code
20817
Gangaiah, Dharanesh; Raterman, Erica L; Wu, Hong et al. (2017) Both MisR (CpxR) and MisS (CpxA) Are Required for Neisseria gonorrhoeae Infection in a Murine Model of Lower Genital Tract Infection. Infect Immun 85:
Ohneck, Elizabeth A; Goytia, Maira; Rouquette-Loughlin, Corinne E et al. (2015) Overproduction of the MtrCDE efflux pump in Neisseria gonorrhoeae produces unexpected changes in cellular transcription patterns. Antimicrob Agents Chemother 59:724-6
Yedery, Roshan D; Jerse, Ann E (2015) Augmentation of Cationic Antimicrobial Peptide Production with Histone Deacetylase Inhibitors as a Novel Epigenetic Therapy for Bacterial Infections. Antibiotics (Basel) 4:44-61
Kandler, Justin L; Joseph, Sandeep J; Balthazar, Jacqueline T et al. (2014) Phase-variable expression of lptA modulates the resistance of Neisseria gonorrhoeae to cationic antimicrobial peptides. Antimicrob Agents Chemother 58:4230-3
Packiam, Mathanraj; Yedery, Roshan D; Begum, Afrin A et al. (2014) Phosphoethanolamine decoration of Neisseria gonorrhoeae lipid A plays a dual immunostimulatory and protective role during experimental genital tract infection. Infect Immun 82:2170-9
Jerse, Ann E; Bash, Margaret C; Russell, Michael W (2014) Vaccines against gonorrhea: current status and future challenges. Vaccine 32:1579-87
Packiam, M; Wu, H; Veit, S J et al. (2012) Protective role of Toll-like receptor 4 in experimental gonococcal infection of female mice. Mucosal Immunol 5:19-29
Kunz, Anjali N; Begum, Afrin A; Wu, Hong et al. (2012) Impact of fluoroquinolone resistance mutations on gonococcal fitness and in vivo selection for compensatory mutations. J Infect Dis 205:1821-9
Jerse, Ann E; Wu, Hong; Packiam, Mathanraj et al. (2011) Estradiol-Treated Female Mice as Surrogate Hosts for Neisseria gonorrhoeae Genital Tract Infections. Front Microbiol 2:107
Vonck, Rachel A; Darville, T; O'Connell, C M et al. (2011) Chlamydial infection increases gonococcal colonization in a novel murine coinfection model. Infect Immun 79:1566-77

Showing the most recent 10 out of 25 publications