Enteroviruses cause a diverse spectrum of human diseases including conjunctivitis, myocarditis, aseptic meningitis, acute flaccid paralysis, and fatal systemic infections of neonates. Poliovirus, the prototypic enterovirus, is well characterized at the molecular level and still serves as the most appropriate virus for detailed studies of RNA translation and RNA replication. In this proposal, poliovirus mRNA translation and RNA replication will be studied in cell-free reactions capable of supporting sequential translation and replication of poliovirus RNA. These reactions are advantageous because they support authentic translation and replication of poliovirus RNA while providing numerous technical advantages including the ability to synchronize viral mRNA translation and viral RNA replication. Using these reactions, we discovered that a cis-active RNA structure at the 5' terminus of poliovirus RNA interacts with seemingly distal cis-active structures in the viral open reading frame and the 3' nontranslated region to coordinately regulate the efficient translation and replication of poliovirus RNA. Partially characterized temporally dynamic ribonucleoproteins containing these cis-active RNA structures mediate and regulate the sequential steps of poliovirus mRNA translation and RNA replication. The experiments described in this proposal will characterize these ribonucleoproten complexes more thoroughly. Experiments will be performed to: 1) determine how the 5' cloverleaf RNA structure of poliovirus potentiates viral mRNA translation, 2) determine how translating ribosomes regulate, in part, the switch from viral mRNA translation to RNA replication, 3) identify the seemingly distal cis-active RNA structures that interact to regulate sequential steps of viral RNA replication, and 4) determine how protein 2C ATPase mediates interactions between seemingly distal cis-active ribonucleoprotein complexes. These studies will contribute substantial new information to support the popular new paradigm of 5'-3' RNA interactions in messenger ribonucleoprotein complexes and RNA replication complexes. The experiments directly test a hypothesis concerning the mechanism by which RNA replication machinery avoids ribosome-replicase collisions. The experiments also test a new, theoretically appealing hypothesis that clearly explains the mechanisms controlling asymmetric RNA replication. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI042189-10
Application #
7447847
Study Section
Virology Study Section (VR)
Program Officer
Park, Eun-Chung
Project Start
1998-07-01
Project End
2009-06-30
Budget Start
2008-07-01
Budget End
2009-06-30
Support Year
10
Fiscal Year
2008
Total Cost
$250,680
Indirect Cost
Name
University of Colorado Denver
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Kempf, Brian J; Peersen, Olve B; Barton, David J (2016) Poliovirus Polymerase Leu420 Facilitates RNA Recombination and Ribavirin Resistance. J Virol 90:8410-21
Kempf, Brian J; Barton, David J (2015) Picornavirus RNA polyadenylation by 3D(pol), the viral RNA-dependent RNA polymerase. Virus Res 206:3-11
Cooper, Daphne A; Banerjee, Shuvojit; Chakrabarti, Arindam et al. (2015) RNase L targets distinct sites in influenza A virus RNAs. J Virol 89:2764-76
Cooper, Daphne A; Jha, Babal K; Silverman, Robert H et al. (2014) Ribonuclease L and metal-ion-independent endoribonuclease cleavage sites in host and viral RNAs. Nucleic Acids Res 42:5202-16
Kempf, Brian J; Kelly, Michelle M; Springer, Courtney L et al. (2013) Structural features of a picornavirus polymerase involved in the polyadenylation of viral RNA. J Virol 87:5629-44
Schuessler, Andrea; Funk, Anneke; Lazear, Helen M et al. (2012) West Nile virus noncoding subgenomic RNA contributes to viral evasion of the type I interferon-mediated antiviral response. J Virol 86:5708-18
Kortus, Matthew G; Kempf, Brian J; Haworth, Kevin G et al. (2012) A template RNA entry channel in the fingers domain of the poliovirus polymerase. J Mol Biol 417:263-78
Shimakami, Tetsuro; Yamane, Daisuke; Jangra, Rohit K et al. (2012) Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proc Natl Acad Sci U S A 109:941-6
Steil, Benjamin P; Kempf, Brian J; Barton, David J (2010) Poly(A) at the 3' end of positive-strand RNA and VPg-linked poly(U) at the 5' end of negative-strand RNA are reciprocal templates during replication of poliovirus RNA. J Virol 84:2843-58
Hobdey, Sarah E; Kempf, Brian J; Steil, Benjamin P et al. (2010) Poliovirus polymerase residue 5 plays a critical role in elongation complex stability. J Virol 84:8072-84

Showing the most recent 10 out of 12 publications