Pathogenic Yersinia species use a virulence plasmid encoded type III secretion system to transport effector proteins (Yops) via a needle structure into the cytoplasm of immune cells, thereby preventing phagocytic clearance of the invading pathogen. Yersinia type III secretion machines are constructed from 26 Ysc proteins, forming a needle-like structure and creating a conduit through which effectors are injected into host cells. Type III machines assume rotational symmetry and several of their components share significant structural homology with the basal body of flagella and with type III machines of other bacteria. Assembly of type III machines requires the secretion of early substrates, namely YscF, which polymerizes into the hollow needle structure, as well as YscP and YopR. Once needle formation is completed, middle substrates, known as translocators, are deposited at the needle tip (LcrV) or in the plasma membrane of host cells (YopB and YopD) to generate the translocation pore. Type III machines encounter a drop in perceived calcium levels in the cytosol of host cells, which is thought to impact the structure of the needle and trigger the transport of late substrates, for example YopE effector, a GTPase activating protein (GAP). Our experimental inquiries are concerned with the events that enable Yersinia to select substrates for organized assembly or secretion by type III machines. Using translational hybrids of early, middle and late substrates with reporter proteins that do or do not pass through the secretion machine, we observed that entry into the pathway requires at least two signals. N-terminal signals initiate all substrates into the type III pathway and these are likely decoded by features of mRNAs that encode proteins destined for travel. Secondary signals are positioned downstream and establish order, i.e. they determine the sequence of assembly and transport events. One of these secondary signals, a stem-loop structure in the 3'coding sequence of yopR mRNA, promotes selection of its product as an early substrate, presumably by programming ribosomes for secretion. Switches in substrate recognition occur at the level of each needle complex and are associated with autoproteolytic cleavage of YscU, the switch protein, and its variable interaction with other machine components, including the type III ATPase complex (YscN-YscK-YscL-YscQ) and YscO. Goal of this proposal is to understand the mechanisms whereby type III machines select substrates for ordered secretion reactions. Further, utilization of newly developed microscopy technologies can now reveal the mechanisms whereby Yersinia select primary host cells for type III injection. Detailed appreciation of how bacterial pathogens use type III machines will enable therapeutic intervention and prevention of many different infectious diseases.

Public Health Relevance

Type III machines enable bacterial pathogens to escape from innate immune responses and establish infectious diseases, however knowledge of the mechanisms that enable type III machine assembly and functional transport of its effectors into immune cells is incomplete or lacking. This proposal's goal is to remedy the knowledge gap, revealing molecular mechanisms of assembly, substrate recognition and transport. Such knowledge can then be exploited to search for small molecule inhibitors that block the pathogenesis of microbes that rely on type III secretion systems to establish human infectious diseases.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-IDM-Q (03))
Program Officer
Mukhopadhyay, Suman
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Chicago
Schools of Medicine
United States
Zip Code
Mitchell, Anthony; Tam, Christina; Elli, Derek et al. (2017) Glutathionylation of Yersinia pestis LcrV and Its Effects on Plague Pathogenesis. MBio 8:
Tam, Christina; Demke, Owen; Hermanas, Timothy et al. (2014) YfbA, a Yersinia pestis regulator required for colonization and biofilm formation in the gut of cat fleas. J Bacteriol 196:1165-73
Ligtenberg, Katherine Given; Miller, Nathan C; Mitchell, Anthony et al. (2013) LcrV mutants that abolish Yersinia type III injectisome function. J Bacteriol 195:777-87
Kopaskie, Karyl S; Ligtenberg, Katherine Given; Schneewind, Olaf (2013) Translational regulation of Yersinia enterocolitica mRNA encoding a type III secretion substrate. J Biol Chem 288:35478-88
Houppert, Andrew S; Kwiatkowski, Elizabeth; Glass, Elizabeth M et al. (2012) Identification of chromosomal genes in Yersinia pestis that influence type III secretion and delivery of Yops into target cells. PLoS One 7:e34039
Blaylock, Bill; Berube, Bryan J; Schneewind, Olaf (2010) YopR impacts type III needle polymerization in Yersinia species. Mol Microbiol 75:221-9
Thammavongsa, Vilasack; Kern, Justin W; Missiakas, Dominique M et al. (2009) Staphylococcus aureus synthesizes adenosine to escape host immune responses. J Exp Med 206:2417-27
Riordan, Kelly E; Schneewind, Olaf (2008) YscU cleavage and the assembly of Yersinia type III secretion machine complexes. Mol Microbiol 68:1485-501
Riordan, Kelly E; Sorg, Joseph A; Berube, Bryan J et al. (2008) Impassable YscP substrates and their impact on the Yersinia enterocolitica type III secretion pathway. J Bacteriol 190:6204-16
Quenee, Lauriane E; Schneewind, Olaf (2007) Ubiquitin-Yop hybrids as probes for post-translational transport by the Yersinia type III secretion pathway. Mol Microbiol 65:386-400

Showing the most recent 10 out of 36 publications