Neisseria meningitidis (Nm) is a major cause of meningitis and septicemia. Serogroup B (NmB) strains account for 30 to 80 percent of invasive disease in different populations. Capsular polysaccharide-protein conjugate vaccines are available against all of the major serogroups except for NmB, which cross-reacts with host antigens. A protein antigen-based vaccine (referred to as 4CMenB) that targets NmB strains recently was licensed in Europe. However, failure of 4CMenB vaccination to decrease asymptomatic NmB carriage was instrumental in a preliminary decision by policy makers not to recommend routine vaccination in the UK. While considerable data indicate that glycoconjugate vaccines prevent both invasive disease and decrease nasopharyngeal colonization, there are important gaps in knowledge about the underlying mechanisms, and how protein-based vaccines can be improved to decrease carriage more effectively. Our hypotheses are that improving serum antibody quantity and quality (i.e, avidity, breadth of epitope reactivity, and functional activity) and/or targeting additional antigens, will increase the ability of NmB vaccine to decrease carriage. The major challenges that impede investigation of these questions are, 1) the specificity of Nm for the human host, and 2) the lack of appropriate in vitro and in vivo models. For example, human CEACAM1 specifically mediates adhesion of Nm to airway epithelial cells, and human complement factor H (fH) specifically down-regulates complement activation and permits meningococci to evade bacteriolysis in humans. Our laboratory has developed a broadly protective meningococcal native outer membrane vesicle vaccine (NOMV) from mutants with genetically attenuated endotoxin and over-expressed factor H binding protein (fHbp). Data indicate that the quality of the antibody responses to fHbp when over-expressed in an NOMV vaccine is greater than to recombinant fHbp vaccines. To determine the effect of NOMV-fHbp immunization on carriage, and to identify additional antigens that might be added to the vaccine to decrease carriage, we propose to: 1) develop in vitro airway models of meningococcal colonization, 2) generate a transgenic mouse model of human colonization that expresses both human CEACAM1 and human fH, and 3) use these model systems to evaluate the ability our NOMV-fHbp vaccine and new antigens to prevent colonization. The results will increase our understanding of the mechanisms by which vaccination decreases meningococcal carriage, and will further development of a broadly protective serogroup B meningococcal vaccine that prevents both invasive disease and asymptomatic carriage.

Public Health Relevance

Limiting meningococcal carriage is an important feature for vaccines for prevention of transmission and disease in large populations. This proposal aims to develop further a broadly protective serogroup B vaccine created by our laboratory by investigating whether it can also prevent carriage, and whether the vaccine can be improved to prevent carriage. These goals will be accomplished by developing novel in vitro and in vivo models to measure effects of vaccination on carriage, and testing whether the addition of new antigens enhances protection against carriage.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
2R01AI046464-13
Application #
8762319
Study Section
Vaccines Against Microbial Diseases Study Section (VMD)
Program Officer
Taylor, Christopher E,
Project Start
1999-12-01
Project End
2019-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
13
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Children's Hospital & Res Ctr at Oakland
Department
Type
DUNS #
City
Oakland
State
CA
Country
United States
Zip Code
94609
Nolfi-Donegan, Deirdre; Konar, Monica; Vianzon, Vianca et al. (2018) Fatal Nongroupable Neisseria meningitidis Disease in Vaccinated Patient Receiving Eculizumab. Emerg Infect Dis 24:
Konar, Monica; Granoff, Dan M (2017) Eculizumab treatment and impaired opsonophagocytic killing of meningococci by whole blood from immunized adults. Blood 130:891-899
Vianzon, Vianca; Illek, Beate; Moe, Gregory R (2017) Effect of vaccine-elicited antibodies on colonization of Neisseria meningitidis serogroup B and C strains in a human bronchial epithelial cell culture model. Clin Vaccine Immunol :
Lujan, Eduardo; Partridge, Elizabeth; Giuntini, Serena et al. (2017) Breadth and Duration of Meningococcal Serum Bactericidal Activity in Health Care Workers and Microbiologists Immunized with the MenB-FHbp Vaccine. Clin Vaccine Immunol 24:
Giuntini, Serena; Lujan, Eduardo; Gibani, Malick M et al. (2017) Serum Bactericidal Antibody Responses of Adults Immunized with the MenB-4C Vaccine against Genetically Diverse Serogroup B Meningococci. Clin Vaccine Immunol 24:
Partridge, Elizabeth; Lujan, Eduardo; Giuntini, Serena et al. (2017) The role of anti-NHba antibody in bactericidal activity elicited by the meningococcal serogroup B vaccine, MenB-4C. Vaccine 35:4236-4244
Lujan, Eduardo; Pajon, Rolando; Granoff, Dan M (2016) Impaired Immunogenicity of Meningococcal Neisserial Surface Protein A in Human Complement Factor H Transgenic Mice. Infect Immun 84:452-8
Giuntini, S; Granoff, D M; Beernink, P T et al. (2016) Human IgG1, IgG3, and IgG3 Hinge-Truncated Mutants Show Different Protection Capabilities against Meningococci Depending on the Target Antigen and Epitope Specificity. Clin Vaccine Immunol 23:698-706
Granoff, Dan M; Giuntini, Serena; Gowans, Flor A et al. (2016) Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding. JCI Insight 1:e88907
Pajon, Rolando; Lujan, Eduardo; Granoff, Dan M (2016) A meningococcal NOMV-FHbp vaccine for Africa elicits broader serum bactericidal antibody responses against serogroup B and non-B strains than a licensed serogroup B vaccine. Vaccine 34:643-649

Showing the most recent 10 out of 95 publications